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ABSTRACT

Enhancing Portability, Modularity, and Optode Density in Translational

Diffuse Optical Imaging

by

Morris Dwight Vanegas

Doctor of Philosophy in Bioengineering

Northeastern University, December 2022

Dr. Qianqian Fang, Adviser

The use of diffuse optical imaging (DOI) in medical applications is growing at a rapid pace

due to its non-invasive, non-ionizing, and potentially portable nature. DOI’s ability to provide func-

tional assessments in various areas of the body has accelerated our ability to diagnose malignant

breast lesions and measure brain functions. Some of these accomplishments have been achieved

through the use of highly-sensitive and bulky equipment that, unfortunately, has made these systems

complex to build, costly to maintain, and difficult to transport. Additionally, the large number of

individual sources and detectors needed not only make each measurement time-consuming but also

introduces coupling variations that make data analysis difficult. Designing increasingly powerful,

versatile, and at the same time, sophisticated optical imaging systems requires careful consideration

of numerous trade-offs between multiple competing factors, including fabrication, ergonomic, envi-

ronmental, safety, usability, mechanical, and data communication considerations. Recently, in order

to scale the application of near-infrared (NIR) optical imaging, the field has trended towards archi-

tectural designs that allow for both faster acquisition times and use in naturalistic environments.

In this dissertation, we investigate and further advance a number of emerging DOI instrument de-

sign methodologies to tackle a series of challenges in the clinical translation of DOI. These include
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the design of low-cost and ultra-portable mobile-phone-based spectroscopic tools to facilitate dis-

ease diagnosis in resource-poor regions, a modular and wearable optical brain imaging system for

understanding brain functions in natural settings, and a wide-field high-density optical breast imag-

ing system for cancer diagnosis. We leverage innovations in computational methods, advanced

electronic sensors, and ubiquitous devices to demonstrate the potentially broad application of NIR

imaging across populations and settings. We particularly focus our intent on the scalability of dif-

fuse optical imaging through improving architectural attributes such as portability, modularity, and

optode density to provide real-life examples of ways to address the current challenges of developing,

evaluating, and optimizing portable high-performance DOI systems.
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To my future self.

Enlightenment was and is formed by a desire to grasp the abstract.
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CHAPTER 1

Introduction

Modern medical imaging has made a profound and transformative impact on clinical di-

agnosis, monitoring, and treatment of diseases [1]. It has served as an invaluable research tool to

advance our knowledge of human physiology, disease pathology, and intervention methods. X-ray

radiography [2], one of the first medical imaging modalities, continues to play an important role

in today’s cancer screening, diagnosis, and surgical guidance. However, its intrinsic limitations,

such as the use of ionizing radiations and morphology-centered imaging contrasts, have also been

widely recognized. For example, in the field of breast cancer imaging, the overlapping tissues

resulting from x-ray-based mammography scans obscure the diagnosis of small and early-stage

cancers [3], resulting in both missed cancer diagnoses and a high rate of false-positives. Despite

exciting progress made in recent years, including significantly lowered radiation dose due to the

use of iterative image reconstruction methods [4] and dual-energy techniques [5], structure-oriented

x-ray imaging continues finding its hindrance in meeting emerging medical needs. Using breast

imaging as an example, the rapid emergence and maturity of digital breast tomosynthesis (DBT),

which employs multiple low-dose x-ray scans to produce a volumetric rendering of the breast [6],

has shown promise in enhancing breast cancer diagnosis. Its lack of functional assessment motivates

researchers to continue the journey of seeking safe, low-cost, functional, and portable alternatives.

The advancement of the medical imaging field has accelerated due in part to the increas-

ing availability of relatively inexpensive computational resources [7]. In this process, we have

witnessed successful clinical translations and expanded utilities of alternative imaging technologies

such as nuclear medicine [positron emission tomography (PET) and single-photon emission com-

puterized tomography (SPECT)], ultrasound imaging, and magnetic resonance imaging (MRI) [8].

Nuclear medicine relies on the detection of injected radioactive isotopes that attach to biochemi-

1
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cally active substances in the body [9]. Similar to computed tomography (CT), nuclear medicine

can generate 3-D images from a series of slices through multiple projection views. MRI is also

non-ionizing, using high-field magnets to obtain tissue information from changing spin properties

of subatomic particles [10]. It is one of the most versatile modalities as its scanning sequence can be

“programmed” to obtain a wealth of tissue-related information, achieving spectroscopic, diffusion,

and dynamic scans using the same instrument. Its capability can be further expanded when used in

combination with dynamic contrast agents. Ultrasound imaging uses high-frequency sound waves

that are reflected back due to different acoustic impedances of tissues and collected to form an im-

age [11]. Not only is it highly portable, but its sound-based technology makes it particularly useful

for imaging structures in motion. These contemporary imaging modalities have improved on the

traditional approach of x-ray imaging, and thus, have begun taking center stage in routine clinical

use more frequently.

Despite their contributions, each of our modern-day diagnostic approaches still possess

some disadvantages. For example, despite working with low doses, the largest man-made source of

radiation exposure comes from radiation due to medical examinations [12]. Nuclear medicine ex-

poses patients to small radiation doses which limits its use for specific subject populations, such as

pregnant women. MRI systems are relatively expensive, and require the subject to be immobile dur-

ing scanning. Such limitations hinder its broad access and utilities in many practical investigations.

Despite being able to image internal organs and soft tissue, ultrasound’s image quality is greatly af-

fected by the degradation of signals at deep imaging depths as well as by the highly sound-reflective

bones [13]. Its difficulty with anatomical and orientation information makes ultrasound imaging

heavily dependent on the experience of the user, calling into question its diagnostic accuracy [14].

To address the high cost, bulky, and in some cases, invasive nature of modern imaging techniques,

the imaging community has started paying increasing attention to diffuse-optics-based imaging and

spectroscopy techniques in recent decades.

Diffuse optical imaging (DOI) is a non-invasive, non-ionizing method that uses visible

and near-infrared (NIR) light to probe the molecular function of deep (over a few centimeters) tis-

sues [15, 16], as opposed to various microscopy techniques that probe tissues at shallow depths (less

than hundreds of microns). Although some optical imaging methods use exogenous contrast agents

(such as fluorescence and phosphorescence imaging [17]), in this dissertation, we specifically fo-

cus on non-invasive DOI techniques that target intrinsic (endogenous) tissue contrasts [18]. Optical

imaging can be used for both spectroscopic and tomographic measurements, providing unique func-

tional contrasts, such as oxy-hemoglobin, deoxy-hemoglobin, and metabolism in terms of oxygen
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saturation, that complement the capabilities of other more established modalities. Despite its advan-

tages, DOI instruments face a number of unique challenges as the community continues advancing

its clinical translation and addressing emerging needs. The relatively bulky-size, high manufacture

cost, and lengthy measurement time of contemporary DOI instrument designs are among the top of

such challenges.

Just like advances in computational methods made modeling the complex interactions

between light and tissue a simpler task, we must now further explore emerging aspects of imag-

ing system architectures to properly scale the advantages of DOI. While it is well agreed upon

that conventional imaging techniques have fundamentally improved our understanding of human

brain functions [19], certain patterns and dynamics are only apparent when measured in natural

environments [20]. Thus, recent advances in optical imaging have focused on wearability to di-

rectly address the limitation of immobility during use of traditional techniques [21, 22]. Similarly,

trends towards highly portable systems have led the community to adopt modular architectural de-

signs made of repeating elementary optical modules [23, 24, 25]. These modular architectures not

only lower fabrication costs but also facilitate the design of long-term wearable systems, allow-

ing researchers to investigate broader paradigms in unrestricted environments. Finally, the inherent

disadvantage of low spatial resolution of DOI systems, caused largely by the high scattering prop-

erties of biological tissues [16], has been recently addressed through wide-field illumination and

fast detection strategies that enable tomographic imaging of large tissue volumes at high acquisition

speeds [26, 27, 28]. Investigating how to improve on these three architectural attributes—portability,

modularity, and optode density—can further advance our understanding of ourselves by allowing us

to expand past the limited types of stimuli and interactions currently imposed on us by contemporary

DOI systems [20].

This dissertation will show the potential of DOI to address a variety of current applica-

tion, user, and setting-specific challenges through the development of multiple imaging systems.

The first challenge is raised by the global health community to address the heightened high-risk

period for babies from the onset of labor through 48 hours after birth in low- and middle-income

countriess (LMICs), which accounts for 54% of neonatal deaths annually [29]. Developing portable,

miniaturized low-cost spectroscopy methods that can be used in conjunction with a mobile phone

could offer life-saving diagnostic tools for front-line clinicians in many resource-poor regions. For

the second challenge, we turn toward the brain. Nearly all of our current knowledge about human

brain functions was characterized using immobile imaging scanners in a lab environment; these lab

settings are drastically different from the free environment outside of the lab, where humans spend
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the most time interacting with each other. To study human brains in natural environments, we have

to design lightweight and mobile imaging systems that can be worn and carried by the subject; they

also need to offer flexibility to probe different brain regions over different, or even multiple, sub-

jects. In this dissertation, we will develop a wearable optical neuroimaging system with features

tailored toward use in naturalistic environments. And finally, we will address the challenge of im-

proving breast cancer diagnosis through the development of an optical mammography system that

augments existing x-ray mammography systems and scans. In this work, we will explore imple-

mentations of architectural attributes to make imaging and spectroscopy systems suited to address

all three aforementioned challenges.

The three imaging systems described in this dissertation will vary in attributes of porta-

bility, modularity, and optode density. To address the challenges above, some systems we design

will leverage computational improvements of light propagation models while other systems will

integrate technological advancements in sensors to improve existing techniques. In all systems, we

will take a translation-focused lens to ensure what we are building is addressing the needs of users.

By demonstrating use cases and designs across a variety of medical imaging attributes, we hope to

help the medical community at large address challenges of non-invasive DOI methodologies and

demonstrate ways to translate and scale these technologies outside of research settings.

This dissertation is separated into five high-level aims. The first three aims refer to the

development of three individual portable and/or wearable near-infrared imaging systems. We will

present the design, fabrication, and characterization of these systems as well as measurements on

human test subjects. The fourth and fifth aims refer to frameworks and workflows developed to fa-

cilitate the analysis of complex modular-architecture-based systems [30] and build repeatable phan-

toms for the validation of new DOI systems. While this introductory chapter sets the challenge and

scope of the research for this dissertation, Chapter 2 gives necessary background into the basics of

optical imaging and details the imaging techniques used in this work. Chapter 3 shows how we

address the first challenge through the development of a mobile-phone-based pulse oximeter that

leverages the sensors inside already ubiquitous mobile phones in LMICs. The second challenge of

advancing neuroimaging is separated into two chapters detailing software and hardware solutions.

We first describe a software workflow that helps design new modular-architecture-based functional

near-infrared spectroscopy (fNIRS) systems (Chapter 4) before describing the hardware develop-

ment of a wearable functional brain imaging system with features tailored towards its use in natural,

unrestricted environments (Chapter 5). The third challenge is addressed in Chapter 6. By leveraging

off-the-shelf mini-projectors and universal serial bus (USB) cameras, we can create accurate breast
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surface acquisition systems that improve stand-alone optical imaging reconstructions, all without

exposing a patient to more ionizing radiation. Chapter 7 discusses the use of additive manufactur-

ing in the development of geometrically complex optical phantoms used to characterize new DOI

systems, including all three systems in the first three aims. Finally, in Chapter 8, we highlight

lessons learned and remaining challenges and conclude with the significance of this work.



CHAPTER 2

Background

In this chapter, we will first introduce the basics of optical imaging components, including

how light interacts with tissue. The second part of this chapter discusses how light propagation is

modeled. Finally, in the last section, we describe the imaging techniques leveraged in this disserta-

tion.

2.1 Basics of Optical Imaging

Optical systems are composed of three elementary blocks: a source that radiates light, a

sample through which light propagates, and a detector that measures the light intensity after photons

have traveled through the sample [31]. Here, we first describe the fundamental interaction between

light and tissue before highlighting the various types of sources and detectors used in the optical

systems developed for this dissertation. We end this section with a short discussion on optical

phantoms—fabricated materials with optical properties designed to mimic those of tissues.

2.1.1 Light-tissue interactions

Biological optical imaging has the capability to detect biological structure, function, and

molecular characteristics based on photon interactions with tissue [32]. The interaction of light with

tissue is governed primarily by three processes: reflection, absorption, and scattering [33].

The index of refraction, n, is a unitless number that describes how fast light travels

through material [32]. It is used to determine how much the path of light is bent upon transitioning

6
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Figure 2.1: Possible interactions when light interfaces with tissue. The pink rectangle represents
tissue. White circles are scatterers. Black dots are absorbers. (1) Specular reflection: light reflects
without entering the tissue. (2) Ballistic transmission: light exits without interacting. (3) Absorp-
tion: light immediately gets absorbed. (4) Scattering: light scatters multiple times before being
absorbed. (5) Diffuse transmission: light scatters multiple times before exiting the tissue on the
opposite side it entered. (6) Diffuse reflection: light scatters multiple times but exits on the side it
entered.
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from one material to the next. This is governed by Snell’s law of Refraction [32],

n1sinθ1 = n2sinθ2 (2.1)

which define the angle of incidence, θ1, and angle of refraction, θ2, based on two media with indices

of refraction n1 and n2. Thus, from Snell’s law, we can also determine the amount of light that is

reflected when reaching an interface (path 1 in Figure 2.1).

Once photons enter a media, they move in all directions and may be scattered or absorbed.

If the media is absorbing only, some photons may be absorbed by the tissue while others may travel

ballistically until they exit the other side (paths 2 and 3 in Figure 2.1). The absorption coefficient,

µa [cm−1], is defined such that, when a photon propagates over an infinitesimal distance dx, the

probability of absorption is µa ·dx [33]. By this definition, the amount of light intensity I attenuated

can be described by dI/I = −µadx. Integrating this equation leads to the Beer-Lambert law [34],

defined as

I(x) = I0e
−µax (2.2)

where I0 is the light intensity at x = 0.

Absorption depends on the chromophore concentrations of tissue [35]. In the visible to

near-infrared wavelength range, the primary absorption components include hemoglobin, water,

melanin, and lipids [36, 37]. The absorption coefficient depends on the molar extinction coeffi-

cient of a given chromophore, ϵ [cm−1M−1], and its Molar concentration, c. Thus, the absorption

coefficient per wavelength is

µa(λ) = ln(10)
t∑

i=1

ϵi(λ)ci. (2.3)

where t is the total number of absorbing components in the tissue. From this, we deduce that 1/µa

is the average path length traveled by a photon before being absorbed.

Turbid media such as tissue possess many scattering components. In addition to absorp-

tion events, light entering tissue can also undergo scattering events, events during which direction-

ality changes occur due to biological structures within the media (paths 4, 5, and 6 in Figure 2.1). In

the visible to infrared wavelength range, the primary scattering components in biological tissue are

protein, fat, and mitochondria [36, 37]. Analogously, the scattering coefficient, µs, is defined such

that, when a photon propagates over an infinitesimal distance dx, the probability of scattering is

µs · dx [33]. Additionally, we model the probability distribution of scattered photons using a phase

function. For biological tissues, the most commonly used phase function is the Henyey-Greenstein

phase function [38]. In this phase function, a scalar between -1 and 1, known as the anisotropy
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factor g [32], denotes the directionality of the scattering angular distribution. A g value close to 1.0

g represents strong forward scattering; a g value close to 0 denotes isotropic scattering. To account

for this anisotropy factor, we define the reduced scattering coefficient, µ
′
s, as µ

′
s = µs(1 − g) [32].

The average distance traveled by a photon between scattering events is 1/µs. Additionally, since

we treat absorption and scattering events as independent events, we can define the optical transport

coefficient (µt), also referred to as the total interaction coefficient, as µt = µs + µa. Analogously,

the transport mean free path, the average distance between interaction events, is the reciprocal of

µt.

2.1.2 Source and detector components of optical measurement systems

We can determine the biological structure and function of tissue based on how light in-

teracts with tissue. In order to do that, we must illuminate the tissue with a light source as well as

measure the diffuse light exiting the tissue.

Light emitting diodes (LED)s are compact, inexpensive, and energy-efficient semiconductor-

based light sources (diodes) that can effectively convert electric energy to light [31]. They are

ubiquitous in modern electronics and produce light spanning across a range of wavelengths. In our

MOXI system, we leverage the white LEDs used for flash photography present in most smartphones.

Our MOBI system uses dual-wavelength LEDs chosen to optimize propagation within the brain lay-

ers. Our OMCI system uses an LED projector (LEDs in conjunction with digital micromirrors) to

shine patterns to scan the surface of the breast. For many spectroscopic measurements, it is im-

portant to have a light source that is monochromatic—meaning that the light irradiated has a single

wavelength. In such cases, a Light Amplification by Stimulated Emission of Radiation (LASER)

based light source is often used. Laser sources often have a low angle of divergence, making it

easy to couple into precise optical components such as lenses and fiber optics. In OMCI, we use a

laser diode to couple light into a projector to project wavelength-specific patterns onto the breast for

wide-field trans-illumination.

Detectors are devices used to measure light. Photodiodes are the reverse of LEDs—they

convert light into electrical current [31]. Their cost tends to be relative to their sensitivity. MOXI

and MOBI use inexpensive photodiodes chosen to be sensitive to the wavelengths of their associated

LEDs. OMCI uses cameras to detect the reflection and transmission of projected patterns. These

cameras capture light through a small lens using a tiny array of microscopic detectors.
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2.1.3 Optical phantom fabrication

Phantoms are objects made of stable materials with optical properties that mimic those of

human tissues [37]. They are commonly used for characterizing and evaluating the performance of

DOI systems [37]. To simulate NIR light propagation within biological tissues, phantoms typically

contain scattering materials to provide the desired reduced scattering coefficient (µ
′
s) and absorbing

materials to simulate the wavelength-dependent absorption coefficient (µa) in biological tissue [39].

Traditionally, these phantoms are created using recipes that involve a mix of scattering agents and

absorbing pigments with a base [40, 41]. The geometry of the phantom is typically created using

either mold casting [42, 43] or spin coating [44].

2.2 Light Propagation Modeling

Light is a form of electromagnetic radiation, and thus can be modeled using Maxwell’s

equations. Although considered the most accurate, this model is typically only computationally

feasible with tiny volumes spanning no more than a few dozen wavelengths. In turbid media such as

tissue, the complex and frequent interactions between photons and media make it nearly impossible

to directly apply this approach for effective modeling.

When simulating large, turbid, or random media, we often model light propagation as

a collection of individual photon packets that interact with a background that has scattering and

absorption properties. This model is called the linear transport theory [45], and it is modeled using

the radiative transfer equation (RTE) [46]. The RTE is an integral-differential equation based on

radiance conservation. It balances the total number of photons entering with the total number of

photons exiting an infinitesimally small volume. Radiance, the power per unit area and unit solid

angle [J/(mm2sr)], is defined by three spatial dimensions (r = {x, y, z}), two dimensions defining

the angular direction (Ω̂ = {θ, ϕ}), and a temporal dimension (t). If we use the notation L(r, Ω̂, t)

for radiance, then the RTE equation is:

1

ν

∂L(r, Ω̂, t)
∂t

+∇ ·L(r, Ω̂, t)Ω̂+µtL(r, Ω̂, t) = µs

∫
4π

f(Ω̂, Ω̂′)L(r, Ω̂, t)dΩ̂′ +Q(r, Ω̂, t) (2.4)

where ν is the speed of light in the medium, f(Ω̂, Ω̂′) is the scattering phase function, Q(r, Ω̂, t) is

the radiance source function, and µt is the optical transport coefficient defined in subsection 2.1.1.

The left side of Equation 2.4 represents the photons leaving an infinitesimally small vol-

ume element due to absorption, scattering, and divergence. The right-hand side balances the equa-
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tion by representing the photons being scattered from all directions into direction Ω̂ and the photons

entering the volume that come directly from the photon source. The difficulty with using the RTE is

two-fold. First, because the equation involves both integrals and derivatives of radiance, obtaining a

closed-form analytical solution is difficult save for simple scenarios. Second, numerical approaches

are computationally intensive due to the need to discretize and store the high-dimensional quantities

of space, angle, and time [47].

One numerical method that has taken on this computationally demanding challenge is the

Monte Carlo (MC) method [48, 49]. Rather than a model-based approach, MC simulates millions

of photon trajectories to converge to a steady stochastic solution. By defining each trajectory with a

simple set of rules based on physical laws, MC is an embarrassingly parallel workload method that

can leverage computational hardware improvements such as graphical processing units (GPUs) [50].

However, in certain scenarios, such as when the media is highly scattering, we can sim-

plify the RTE to gain even more computational efficiency compared to an MC approach. In highly

scattering media such as the breast, we can assume that the reduced scattering coefficient is much

greater than the absorption coefficient (µ′
s ≫ µa), and thus ignore the angular dependency of pho-

ton radiance. By considering the photons to scatter isotropically, we can approximate the radiance

as the fluence, or Φ(r) =
∫
r

∫
Ω̂ L(r, Ω̂, t)dΩ̂dt, allowing us to reduce the RTE to a quadratic partial

differential equation that is relatively simple to solve. We call this equation the diffusion equa-

tion (DE) [51, 52], defined as:

−∇D(r)∇Φ(r, t) + µa(r)Φ(r, t) +
1

ν

∂Φ(r, t)
∂t

= S(r, t) (2.5)

where S(r, t) is the isotropic source term and D is the diffusion coefficent defined as D = 1
3(µa+µ′

s)
.

An in-house MC-based light simulator, Monte Carlo eXtreme (MCX) [53], can incorpo-

rate geometrically-accurate boundaries into simulations to study diffuse optics in complex shapes.

Another in-house tool, Redbird-m [54], is a diffusion-based tool for analyzing large scattering me-

dia. In the following chapters, we will run MCX-based forward models for designing our MOXI

and MOBI systems and will use the diffusion solver Redbird-m for the forward modeling related to

OMCI due to the larger target tissue volume.

2.3 Imaging Techniques

Light propagating in biological tissue is in the diffusive regime, meaning that photon prop-

agation loses directionality after extensive scattering events. DOI is the general imaging modality
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that uses measurements of diffuse light to investigate tissue characteristics. Diffuse optical spec-

troscopy (DOS) is the method of using diffuse light to infer scattering and absorption. In biological

tissue, we typically use the NIR range due to its low absorption by tissue, and thus, DOS is often

referred to as near-infrared spectroscopy (NIRS). When we apply DOS to generate 2-D or 3-D

volumetric distributions of tissue optical properties, we are creating tomographic images. We refer

to this implementation of DOI as DOT. One exception among the imaging techniques investigated

in this work is SLI. It utilizes reflected light from the tissue’s surface, instead of diffusive photons,

to acquire 3-D geometrical shapes.

Figure 2.2 sets the context for this dissertation by overlaying the imaging techniques

and relevant anatomies used in our three systems over the light-tissue interactions seen in Fig-

ure 2.1. Although traditional pulse oximeters use diffuse transmission interactions [dashed line in

Figure 2.2(a)], MOXI performs DOS from diffuse reflected light [solid line in Figure 2.2(a)]. MOBI

leverages diffuse reflected light to perform NIRS [Figure 2.2(b)]. fNIRS systems may also perform

DOT when an array of sources and detectors are used. In OMCI, we perform DOT from illumina-

tion using a wide-field pattern and detector from a camera [Figure 2.2(c)]. Additionally, OMCI also

uses SLI from reflected light to determine the breast shape [Figure 2.2(d)]. An introduction to these

four imaging techniques follows.

2.3.1 Pulse Oximetry

Pulse oximetry is used to measure oxygen saturation of hemoglobin in arterial blood and

is so widely prevalent it is regarded as the fifth vital sign in medical care [55]. It is based on two

principles. The first is that oxygenated hemoglobin (HbO) and de-oxygenated hemoglobin (HbR)

absorb red and infrared (IR) light differently [56]. Because of this, pulse oximeters tend to emit only

two wavelengths of light. Traditional (finger-clip) pulse oximeters place light sources and detectors

on opposite sides of the finger [Figure 2.2(a)]. Expanding Equation 2.3, we can use two wavelengths

λ1 and λ2 to obtain the molar concentrations of oxygenated and de-oxygenated hemoglobin, cHbO

and cHbR, by simultaneously solving the following [32]:

µa(λ1) = ln(10)ϵHbO(λ1)cHbO + ln(10)ϵHbR(λ1)cHbR (2.6)

µa(λ2) = ln(10)ϵHbO(λ2)cHbO + ln(10)ϵHbR(λ2)cHbR (2.7)
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1

MOXI:
DOS on 
the finger

(a)

1

MOBI:
fNIRS on 
the head

(b)

1

OMCI:
DOT on 
the breast

(c)

1

OMCI:
SLI on 
the breast
surface

(d)

Figure 2.2: Relevant anatomies (finger, head, breast) for the three imaging systems (MOXI, MOBI,
OMCI) overlaid on light-tissue interactions in Figure 2.1. Red light paths highlight the type of inter-
action used in each imaging system and technique. (a) MOXI uses diffuse reflected light measured
at the finger. (b) MOBI uses diffuse reflected light measured at the scalp. (c) Our OMCI system per-
forms DOT on the breast using trans-illumination. (d) Reflected light is used for SLI measurements
on OMCI. Anatomies in green are representative and are not to scale.
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The total hemoglobin concentration, cHbT , can then be calculated simply by cHbT = cHbO +

cHbR [35]. We can then obtain blood oxygen saturation (SO2) using

SO2 =
cHbO

cHbT
(2.8)

The second principle of pulse oximetry is that arterial blood volume fluctuates with the

cardiac cycle while blood volume in veins, capillaries, skin, fat, and bone remains relatively con-

stant [57]. Thus, light that propagates through the finger and is detected by the detector has two com-

ponents during temporal measurements of the cardiac cycle—a relatively stable and non-pulsatile

direct current (DC) component from the constant volume in veins and capillaries, and a pulsatile

alternating current (AC) component from the volume fluctuation of the arteries [58]. This detected

time trace is called a photoplethysmogram (PPG) [57]. Traditional pulse oximeters use the am-

plitudes of PPG signals from red and IR light to calculate oxygen saturation. Technically, pulse

oximetry measures peripheral blood oxygen saturation (SpO2), which is a measure of oxygen satu-

ration measured at the finger. SpO2 is calculated from the ratio of the AC to DC components of the

red and IR light. The ratio-of-ratio (RR) is defined as

RR =
Ared,AC/Ared,DC

AIR,AC/AIR,DC
(2.9)

where A is the amplitude of the PPG trace. At low oxygen saturation, the increased presence of HbR

leads to a larger relative change in amplitude of red light due to the pulse compared to IR absorbance

(Ared,AC > AIR,AC), resulting in a higher RR value. SpO2 is calculated from a calibration curve

mapping RR to SpO2 generated from empirical measurements of RR in healthy volunteers with

altered saturations [59].

2.3.2 Functional Near-Infrared Spectroscopy

An emerging neuroimaging technique that uses low-power near-infrared light to measure

hemodynamic changes due to brain activities is fNIRS [60]. It is based on three fundamental prin-

ciples. The first is the same as pulse oximetry, which is that human tissue is relatively transparent

to light in the near-infrared range allowing photons to propagate. Secondly, hemoglobin has unique

absorbing characteristics that allow for oxygenation-dependent quantification of NIR light absorp-

tion [61]. The third is the theory of neurovascular coupling, which states that the brain’s demand

for oxygen is altered by neuronal activation. FNIRS assumes that changes in hemoglobin concen-

trations are indicators of brain activity [60].
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In fNIRS, multiple sources and detectors are placed on the scalp over a region-of-interest

(ROI) [62]. The photons travel through the head being scattered and absorbed by the different tissue

types [63] (scalp, skull, cerebrospinal fluid, and neuronal tissue) until the non-absorbed components

of the scattered light are detected by a detector [64, 65] [Figure 2.2(b)]. The complication with light

traveling in the head is the highly scattering nature due to multiple tissue types makes it difficult

to estimate the actual photon distance traveled. Thus, we need to modify the Beer-Lambert law

to better account for the pathlengths of photons [66]. Using Equation 2.2, we can define optical

density (OD) in the Beer-Lambert law as OD = −log10(I/I0) = −µa · X . The modified Beer-

Lambert law (MBLL) extends the Beer-Lambert law to include G, a parameter that accounts for

light intensity loss due to scattering. The intensity of the light detected will change due to the

concentration changes of HbO and HbR induced from local brain activity [65, 67], which change

the absorption rate of neuronal tissue. The MBLL is expressed as

OD(t, λ) = −log10

(
I(t, λ)

I0(t, λ)

)
=

∑
i

ϵi(λ)ci(t)DPF (λ)d+G(λ) (2.10)

where d is the distance between the source and detector on the scalp, and DPF is the differential

pathlength factor, a unitless variable that accounts for the increased distance that light travels in

the brain. Finally, if we make the assumption that G is time-invariant and only absorption prop-

erties change with brain activity, we can relate changes in light measurements to changes in tissue

absorption by simply comparing a baseline to a perturbed state, resulting in

∆OD(λ) =

[∑
i

ϵi(λ)∆ci(λ)

]
·DPF (λ) · d (2.11)

Equation 2.11 allows for the calculation of cHbO and cHbR from two wavelengths. However, we can

extend this approach to use multiple wavelengths to calculate the concentration changes of multiple

chromophores.

2.3.3 Diffuse Optical Tomography

DOT is a non-invasive imaging technique for 3-D functional tissue characterization [16].

This is done through the illumination of tissue with an array of light sources and the measurement

of the exiting light with an array of detectors [68] [Figure 2.2(c)]. Typically, a source in the array

is turned on and the light is measured by all detectors for that source. This is repeated sequentially

for each source. We can leverage photon propagation techniques to simulate the expected measure-

ments of exiting light. Herein lies the problem: we must know the optical properties of the tissue
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in order to simulate the forward problem, but the determination of those unknown scattering and

absorption coefficients is precisely what we are trying to derive [52]. Therefore we must “invert”

our model. The image reconstruction problem, also known as the inverse problem, seeks to deter-

mine volumetric distributions of optical properties that can best fit the measurement data taken at

the surface of the domain.

Although conceptually simple, the solution to the inverse problem is notoriously difficult

due to DOT being non-linear, ill-posed, and generally underdetermined, making it difficult to find

a unique and reliable solution. Typically, we formulate the inversion as a parameter optimization

problem and use a regularization approach where we add a second term to be minimized to obtain a

meaningful solution [69], such as

x̂ = argmin
x

∥y − Γ · Φ(r)∥2 + λ ∥x − x̄∥2 (2.12)

where λ is the regularization parameter. The first term is quantifying our measurement data, where

y is the measured fluence by our detectors and Γ is a spatial-sampling matrix used with our forward

simulation, Φ(r). The second term, ∥x − x̄∥2, attempts to penalize solutions and stabilize the in-

version of our forward model. It is composed of our unknown vector of optical properties, x, and a

vector of known (or assumed) initial guesses, x̄. The regularization parameter is essentially balanc-

ing our need to fit the solution to the measured fluence by enforcing how reasonable our solution

should behave (in our case, reasonable behavior is a solution that stays as close as possible to our

prior knowledge). Both the approach to the inverse problem as well as methods for picking the

regularization term are active areas of investigation [15, 70, 71].

2.3.4 Structured-Light Imaging

One method of improving DOT image reconstructions is to further constrain the inverse

problem through highly accurate breast surface estimations to provide geometric boundaries used

in light propagation models. An emerging, non-invasive 3-D surface imaging technique is SLI. SLI

works by illuminating an object with 2-D spatially varying patterns and using an imaging sensor

(e.g. a camera) to capture the illuminated object [72] [Figure 2.2(d)]. The distortion of the specially

designed patterns informs of the geometric properties of the object. Calibration of the projector-

camera system is easily done by capturing images of a known planar pattern [73]. With the ability

to use off-the-shelf components, its use with a single projector and camera, and a robust and sim-

ple calibration method, SLI is positioned to be an accurate, fast, and cost-effective breast surface

imaging system.



CHAPTER 3

Mobile-phone based oximeter (MOXI)

In this chapter, we establish the feasibility and accuracy of three smartphone-based ap-

proaches to monitoring oxygenation. Compared to a traditional finger-clip-based pulse oximeter,

all three devices in this chapter improve on the portability attribute of this spectroscopic-based in-

strument by using either phone-powered boards, wrist-worn designs, or the use of ultra-low-cost

components. Additionally, features like non-contact measurements and a mobile application to con-

trol multiple devices all facilitate the potential scaling of the use of NIRS. Here, we detail the

design, fabrication, and evaluation of three distinct NIRS devices, each with distinct advantages for

use in LMICs.

In order of decreasing the complexity of hardware, the first device (D1) is a Bluetooth

wireless oximeter board with a dedicated pulse oximetry chip [green square in Figure 3.1(b)]. The

second device (D2) measures tissue oxygen saturation (StO2). It functions by imaging light atten-

uation in tissue through a slit on a circuit board carrying LEDs [yellow square in Figure 3.1(c)].

The third device (D3) is a paper filter covering half of the field of view of a smartphone camera

[Figure 3.1(b)]. All three devices utilize our in-house developed mobile phone application [Fig-

ure 3.1(a)] to monitor heart rate (HR) and SpO2. The three devices, along with a screenshot of the

mobile phone application, are seen in Figure 3.1. Although we include details on D1 and D2 for

completeness, when we refer to the MOXI system, we are referring to the colored-paper-based D3

design.

17
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Table 3.1: Barriers to adoption of new medical devices in LMICs

Rank Barrier to Adoption

1 Acquisition Costs
2 Spare Parts
3 Consumables
4 Reliable Power
5 Infrastructure
6 Training

3.1 Introduction

Every year, nearly 3 million newborns die within the first 4 weeks of life in LMICs [74].

Respiratory complications, such as birth asphyxia, and congenital heart defects, such as Tetralogy of

Fallot (which results in Blue Baby Syndrome – a condition caused by low tissue oxygenation), are

among the major causes of death at birth for neonates. In addition, over 17% of the post-neonatal

child deaths are caused by childhood pneumonia and other acute respiratory infections, accounting

for 4 million deaths per year for children under age 5 [75]. These conditions often lead to low

arterial and tissue oxygenation [76]. Many of these complications are easily screened, diagnosed,

and continuously monitored in most facilities in developed countries using a pulse oximeter, a device

to measure SpO2 levels using low-power light based on NIRS.

Finger-clip-based pulse oximeters, however, are difficult to use on small fingers. Newborn-

specific pulse oximeter probes, often sold as disposable parts, can cost up to $100 USD, and require

a more expensive oximeter system to read and display results [77, 78]. These designs thus have

an extremely limited presence in first-level clinics in LMICs. In recent years, portable NIR de-

vices have been reported, but they generally have high costs dues to sensitive charge-coupled de-

vice (CCD) cameras and stand-alone image acquisition software [79], or still require the use of a

finger-clip [80, 81]. Many factors, primarily high acquisition and maintenance costs (Table 3.1),

have hindered the adoption of portable diagnostics tools [82].

In 2018, the Pew Global Research Center reported that smartphone ownership in LMICs

rose from 21% to 45% between 2013 and 2018, making smartphone networks the fastest growing

infrastructure in LMICs [83]. By capitalizing on the ubiquitous presence of smartphones worldwide,

we aim to develop phone-camera-based and phone-communication facilitated NIRS devices to mea-

sure arterial and tissue oxygenation, directly addressing the barriers to adoption in Table 3.1. These

smartphone-based devices can address the current limitations of conventional pulse oximeters, in-
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(a) (b) (c)

Figure 3.1: (a) Screenshot of Moximeter mobile application simultaneously capturing D1 and D3
data. (b) D1 (green, dashed) and D3 (yellow, solid) mounted on a smartphone phone. (c) D2 board
with cover.

cluding newborn-unfriendly clip designs, acquisition and maintenance costs of disposable probes,

and the need for frequent disinfection due to direct skin contact. Leveraging smartphone features

such as cameras, LEDs, and wireless communication along with their power and computation will

pave the way for point-of-care (POC) smartphone-based diagnostic tools.

3.2 D1: Bluetooth Reflectance Pulse Oximeter

3.2.1 D1 hardware

The D1 design works similarly to a clinical-quality pulse oximeter, except the optodes

are placed on the same side of the finger. A photodiode captures the diffuse reflected light emitted

from two onboard LEDs (640 and 940 nm) in order to estimate SpO2. This reduced form fac-

tor, non-finger-clip design makes pulse oximetry measurements more newborn-friendly. The D1

board makes use of a low-cost ($3.5 USD) dedicated analog front-end (AFE4490) pulse oximeter

signal-processing chip (AFE4490 Integrated Analog Front-End, Texas Instruments, USA) and a mi-

crocontroller (ATMega32u4, Atmel, USA) communicating via the serial-peripheral interface (SPI)

communication protocol. The 40x40 mm2 rigid printed circuit board (PCB) can be battery-powered

or powered by a mobile phone using a male-to-male USB cable.
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(a) (b)

Figure 3.2: (a) D1 phone mount. (b) Simultaneous capture of D1 and D3.

3.2.1.1 Optode settings for neonates

In diffuse reflectance measurements, the distance between the sources and detector deter-

mines the depth of photon propagation. Given the larger fingers of adults compared to neonates in

our initial studies (Massachusetts General Hospital approval is for use on adults with subsequent

tests on neonates), the current reflectance board has optodes optimized for an adult finger by us-

ing a large source-detector distance of 17 mm. This was empirically chosen based on sweeping

the source-detector (SD) distance from 2.54 to 15.24 mm in 2.54 mm increments (0.1 inches to

0.6 inches in 0.1-inch increments based on the breakout board). The highest signal-to-noise ra-

tio (SNR) at this distance was obtained when driving the LEDs at 25 mA. Both 10 and 50 mA

resulted in smaller amplitudes of the AC component of the signals due to low photon detection and

photodiode saturation, respectively. The same trend is seen with the SD distance where being too

close or too far leads to weak signals or photodiode saturation. Although set to 17 mm for the pilot

rests with adults, when used on neonates, the SD distance should be decreased to account for their

smaller finger sizes.

3.2.1.2 Phone mount

The D1 board is placed over a Nexus 5X smartphone using a custom mount [Figure 3.2(a)].

The mount not only holds the D1 board onto the phone but also prevents users from touching the

active electronics of the PCB. The mount is 3-D printed out of polylactic acid (PLA). The side
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panels that grip onto the phone have gaps designed to avoid accidentally pressing the volume and

power buttons on the sides of the smartphone. The D1 board is press fit onto two small round tabs

on the inside of the mount, eliminating the need for extra tools. The flat side of the mount is 0.2 mm

thick to allow maximum surface contact of the optodes with the finger. Holes on the mount allow

access to the reset button of the board, as well as allow the Bluetooth chip to protrude outside for

better signal quality. The D1 board is mounted off-center to the smartphone to accommodate the

longer length of the middle finger compared to the index finger. This allows both fingers to lay

comfortably flat during simultaneous capture of D1 and D3 signals [Figure 3.2(b)]. The D1 board

is powered by a USB male-to-male cable connecting the board to the smartphone’s battery.

3.2.2 D1 software

An Android phone application called Moximeter, written in Java, was developed to pro-

cess the received signals from the D1 and display the results on the phone. Register values of

the AFE4490 were set to 25 mA for each optode and a 500 Hz corner filter was applied post-

amplification. A long pulse repetition frequency of 250 Hz allows for dynamic averaging of 16

samples per data point by the analog-to-digital converter (ADC) to increase SNR. Bluetooth com-

munication transmits data between the D1 board and the phone. The phone application displays the

signals for the red and IR channels at the top of the screen. The signal sample-per-second (in Hz) is

dynamically estimated and the PPG waveforms are processed in real-time using embedded C-code

for maximum efficiency to obtain the oxygen saturation values. The real-time signal processing

includes a built-in signal filtering algorithm, a peak detection algorithm, an algorithm to estimate

HR, and an algorithm to compute SpO2 using a transmission pulse oximeter calibration model [84].

The real-time HR and SpO2 values are displayed in the Moximeter graphical user interface (GUI)

[Figure 3.1(a)].

3.2.2.1 Noise removal

Unlike a transmission finger clip where the optodes and finger are coupled, a reflectance-

based measurement is more prone to noise and artifacts since the finger being sampled can move

independently of the optodes. To reduce this noise, 16 readings of red and IR readings are sampled

by the AFE4490 prior to sending an average value to the Moximeter phone application. The sam-

pling is done onboard to maintain our 60 Hz sampling rate. Additionally, a 5 ms delay has been

added between the SPI transfer calls by the microcontroller to allow the AFE4490 to stabilize. This
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(a) (b)

Figure 3.3: (a) Photoplethysmogram signals from evaluation module board and D1 design. (b)
Ratio-of-ratios in blue (evaluation module) and green (D1 Device).

stabilization prevents the loss of data and decreases the likelihood of garbled measurements. As an

added precaution, our processing of data workflow now incorporates a mean filter in addition to our

bandpass filter to remove any unwanted “chirps” or spikes in data.

3.2.2.2 Independent source control

The receiver channel of the board is made up of a differential current-to-voltage trans-

impedance amplifier followed by a current digital-to-analog converter (DAC). The amplifier has

programmable a feedback resistor (RF ) and a capacitor (CF ) to form a low-pass filter for the input

signal current. The output voltage of the amplifier includes the AC component and a component

resulting from ambient light leakage. The DAC attempts to amplify only the AC component of

the PPG signal. By systematically varying RF , CF , and the transmitter reference voltage for each

optode, we are able to determine the AFE4490 configuration that maximizes the AC components

of both red and IR PPG signals, independently. Since the RR is based on the amplitude of the AC

component of the PPG signals, increasing the AC range with optimized AFE4490 configurations

allows for more sensitivity in RR calculations and thus more accuracy in SpO2 readings.

3.2.3 D1 results

To evaluate the D1 prototype, we compared the obtained signals from our device against

simultaneously acquired signals from an evaluation module (EVM). The EVM captures PPG sig-
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(a) (b) (c)

Figure 3.4: (a) Top side of D2 circuit showing USB connector and microcontroller. (B) Bottom
side of the D2 circuit showing deep red (top) and red (bottom LEDs). (C) D2 board powered by a
smartphone and an on-the-go USB cable.

nals through transmission via a finger flip on the middle finger. The index finger of the same hand

was placed over the optodes on the D1 device. The PPG signals in Figure 3.3(a) were simultane-

ously captured from the D1 device and from the AFE4490 EVM during a 46-second breath-holding

procedure. Signals were band-pass filtered using a sixth-order zero-phase Butterworth filter to re-

move out-of-bound noise (0.2 to 5 Hz). As shown in Figure 3.3(b), RR (Equation 2.9) increases as

SpO2 decreases due to the larger difference between extinction coefficients of HbO and HbR at red

versus IR light. The pairwise linear correlation coefficient, R, between the two ratio-of-ratio signals

in Figure 3.3 is 0.4856.

3.3 D2: Single Slit Oximeter

3.3.1 D2 hardware

The D2 design is a compact, low-cost, non-contact, and wearable LED-based illumination

module to quantitatively measure StO2. The D2 design is made from a 53x28 mm2 circuit board

with a 2x20 mm2 imaging window (the “slit”) [Figure 3.4(a)]. Two LEDs (640 and 730 nm) are

mounted facing the skin at opposite sides of the long dimension of the slit [Figure 3.4(b)]. A

730 nm wavelength was chosen because IR light is not visible in the smartphone complementary

metal-oxide semiconductor (CMOS) sensor. Moreover, HbO shows a similar absorption at the two

wavelengths and HbR has a higher absorption at 640 nm than at 730 nm.
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A micro-USB connector is added to provide power while a microcontroller (ATtiny85,

Atmel, USA) controls the LED timing [Figure 3.4(c)]. Four of the eight pins on the microcon-

troller are used by the in-service programmer (ISP) to program the board using the Master-In-

Slave-Out (MISO), Master-Out-Slave-In (MOSI), Serial Clock (SCK), and reset (RST) pins. Power

and ground each have a dedicated pin, leaving two analog pins available for the red and deep red

LEDs. The use of analog pins allows us to use pulse-width modulation (PWM) to drive the LEDs.

By varying the pulse width, we can control the time an LED is on and control its intensity. The

microcontroller has a max output of 40 mA per pin, allowing the LEDs to be connected without

the need for resistors. The board is programmed by holding the ISP pins onto the pads without

soldering, allowing us to remove the programming pins after programming and reducing the board

thickness. In total, the only four components on the D2 milled circuit board are the two LEDs, the

microcontroller, and a USB female header for power.

The D2 design is made of two milled copper boards placed back-to-back. This has two

main advantages. First, it allows the ability to easily swap out any broken LEDs if they break

during use without having to mill out all the traces. Secondly, the LEDs are soldered directly to

the underside of the board, allowing them to be in direct contact with the skin to minimize specular

reflection. The entire board is encased inside a 3-D printed PLA cover. Velcro straps on the edges

of the milled board allow the D2 design to be comfortably worn [Figure 3.1(c)].

3.3.2 D2 software

The microcontroller is programmed to cycle between three stages at one-second intervals.

After securing the module with an elastic Velcro strap and powering the board with a USB cable,

the microcontroller automatically begins cycling between the red LED on, deep red LED on, and

no LEDs on, each for one second, indefinitely. The one-second interval with no LEDs on is used

to capture background data. The diffuse reflection profile across the slit of both wavelengths can be

measured directly by taking a video of the slit opening using the smartphone camera controlled by

our Moximeter application. The three intervals from the video stream are automatically detected by

comparing intensity values at the ends of the slit. A moving bin average is used to estimate StO2

changes.
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(a) (b)

Figure 3.5: (a) Nexus and Andor camera experimental setup. (b) Example cropped slit image for
analysis.

3.3.3 D2 results

Here, we propose to use the linear slope of the log-scaled image intensity along the slit as

a surrogate marker to correlate with tissue oxygenation changes. This slope can be easily computed

in real-time on low-power devices such as mobile phones.

3.3.3.1 Protocol and setup

A Nexus 5 Android phone and an Andor electron-multiplying charge-coupled device

(EMCCD) camera (Luca-R, Andor, UK) were both mounted above the slit region and used to ac-

quire video recordings simultaneously [Figure 3.5(a)]. The cameras recorded at 10.8 (Andor) and

30 (Nexus) frames per second while the red and deep red LEDs alternated every second. Data were

captured in a dark room with the phone screen brightness set to the lowest setting. The subject held

onto a handle during data gathering to minimize motion artifacts. An example of the acquired image

(cropped using MATLAB) can be seen in Figure 3.5(b). Slit images were analyzed frame by frame

for each camera. A blood occlusion experiment was performed using a standard pressure cuff. Prior

to data capture, the pressure was increased to 200 mmHg and held for 20 seconds. After 20 seconds

of data capture, the pressure was released.
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(a)

(b)

Figure 3.6: Intensity attenuation slopes for the Andor (a) and Nexus (b) camera data. Top (640 nm)
and bottom (730 nm) rows show the averaged attenuation slope of the log-scaled light intensity over
time within a selected window. The vertical green lines mark the point at which pressure from the
cuff was released.
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3.3.3.2 Benchtop results

The linear slope time courses obtained from the Andor and Nexus cameras for 640 and

730 nm are shown in Figure 3.6. Each marker in the plot is obtained by averaging the frames during

the 1 second a particular LED is on. The vertical green line indicates the point of pressure release.

The overall shape of the slope profile from the Nexus camera is similar to the Andor camera in

both 640 and 730 nm. The pairwise linear correlation coefficients, R, between the two cameras are

0.8627 (640 nm) and 0.7986 (730 nm). The increase in slope immediately following the pressure

release is expected due to the higher absorption coefficient of the total hemoglobin that rushes

in. These results suggest that a low-cost phone camera is capable of capturing blood volume and

oxygenation changes in tissue.

3.4 D3: Paper Filter Pulse Oximeter (MOXI)

The D3 design is a broadband diffuse reflection pulse oximeter that utilizes a smartphone’s

embedded flash LED as the source and the smartphone’s camera as a detector. An ultra-low-cost

paper filter covering half of the camera’s field of view manipulates the original spectra by attenu-

ating certain wavelengths (Figure 3.7(a)). The hypothesis is that when a finger is placed over the

phone’s camera and LED, the observed spectra differences combined with the tissue absorption

spectra will make it possible to make spectroscopic measurements. Point-of-care devices like these

that require no or minimal attachments provide a much greater impact on the accessibility of such

devices in resource-poor regions by directly addressing the acquisition and maintenance costs that

hinder technological adoption (Table 3.1).

3.4.1 Photon propagation simulations

3.4.1.1 MCXlab simulations

A previously segmented, high-resolution, 7 Telsa realistic 3-D finger model was used

for the photon propagation simulations [85] [Figure 3.7(c)]. The original 15 components were

combined to represent six tissue types: dermis, epidermis, arteries, veins, fatty tissue, and bone. We

ran a series of GPU-based Monte Carlo simulations using MCX [53] using 5×109 photons in both

transmission and reflectance mode. The detector diameter was set to 3 mm, and the source-detector

distance in reflectance mode was set to 10 mm, as measured from the mobile phone’s dimensions.

To simulate broadband light, the optical properties of the finger tissues were swept between the
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Figure 3.7: (a) D3 design in use with a finger placed over the camera after a paper filter is taped over
the bottom half of the mobile phone camera. (b) Broadband spectra (black) and resulting spectra
after manipulation using colored paper filters. The color line refers to the color of the paper filter.
(c) Simulation setup showing finger model with six tissue types.
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wavelength band of 350 to 1000 nm in 1 nm increments, with intensity based on the measured

spectrum of an Android Pixel 2’s LED. The filtered broadband light was then further attenuated by

the ratio between unfiltered and filtered spectra. The intensity was estimated by fluence.

3.4.1.2 Optical properties

The optical properties of the six tissue types were compiled from literature. The absorp-

tion and scattering coefficients of oxygenated whole blood, de-oxygenated whole blood, water, and

melanosome were obtained from the MCXYZ.c light transport program [86]. Bone optical proper-

ties were digitized from published results [87]. Dermis and epidermis tissue optical properties were

created from blood [88], water [89], fat [90], and melanosome [91] volume fractions from litera-

ture [92]. Blood was assumed to have a hematocrit value of 45%. The remaining 55% is plasma,

which is typically composed of 92% water and 8% food, protein, and other solids [92], but was sim-

plified to 100% water for these simulations. Venous blood was assumed to have 70% SpO2. SpO2

levels ranging from 85% to 100% are simulated by adjusting the corresponding optical properties

of blood resulting from the volume fractions changes of the arteries.

3.4.1.3 Attenuation spectra of paper filters

A spectrometer (Flame VIS-NIR, Ocean Insight, USA) was used to measure the spectrum

of an Android Pixel 2 flash LED. Transmission spectra from paper filters of various colors, which

further alter the light source spectrum, were also measured [Figure 3.7(b)]. Broadband spectra were

scaled to a max arbitrary unit of 1. The green paper filter was chosen due to its capability of blocking

near-infrared light while still not attenuating the original broadband light significantly. This provides

a means to differentiate between the broadband light source and a filtered broadband source, which,

when combined with the tissue absorption spectra, makes spectroscopic measurements using two

broadband sources possible.

3.4.1.4 PPG signal generation

The PPG signal, the measured intensity by the detector, was simulated by increasing

the volume of the arteries in the model using a gaussian filter until a 20% change in the detected

fluence was obtained at 690 nm in transmission [93]. This artery volume increase was used for both

transmission and reflection modes as well as for both traditional (two-wavelength) and broadband

simulations. All other tissue volumes remained constant. The resulting fluence values for both
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Figure 3.8: Process of creating the ratio-of-ratio to arterial blood oxygen saturation mapping in sim-
ulation. Monte Carlo simulations result in fluence measurements at various arterial blood oxygen
saturation values for both wavelengths at 0 and 20% artery volume increase. An example 1 sec-
ond photoplethysmogram pulse is scaled by the fluence measurements and repeated to create a time
trace. Each repetition is low-pass filtered with a randomized cutoff frequency between 60 and 100
hz. The ratio-of-ratio value is then calculated from the simulated photoplethysmogram signals.

finger artery volume changes were then used to scale a discretized PPG signal [94] to create a

60 bpm oscillation optical measurement. A PPG signal was created for each SpO2 value for each

pulse oximeter mode (transmission and reflection), as well as for traditional (two-wavelength) and

broadband simulations (Figure 3.8).

3.4.1.5 Ratio-of-ratio for broadband spectroscopy

The traditional calculation of RR in Equation 2.9 was altered slightly to account for broad-

band light. For this device, RR is defined as

RR =
ABB,AC/ABB,DC

AFB,AC/AFB,DC
(3.1)

where A is the amplitude, BB refers to the broadband PPG signal, and FB refers to the filtered

broadband PPG signal of our simulations.

3.4.2 Simulation validation results

The RR values calculated from the fluence values at the detector locations from the MCX

simulations are shown in Figure 3.9. Traditional two-wavelength transmission simulations showed a
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Figure 3.9: Results of ratio-of-ratio mapping to arterial blood oxygen saturation based on Monte
Carlo simulations. The curves are shown for two-wavelength simulations in transmission, two-
wavelength simulations in reflection, and broadband simulations in reflection.

typical linearly decreasing relationship between RR and SpO2 as expected. The difference between

the maximum and minimum RR is 0.0795. In traditional two-wavelength reflection mode, the range

of RR dropped to 0.0519. This indicates that transmission mode is more sensitive to changes in RR,

and thus to changes in SpO2, than reflection mode.

For broadband simulations, the range of RR was 0.013 for transmission mode, dropping

by nearly six times as compared to traditional transmission simulations. The difference between

RR ranges in traditional and broadband simulations in reflectance mode was about an order of

magnitude, with a maximum RR range of 0.005 for broadband reflectance simulations.

Despite the sensitivity of a traditional two-wavelength transmission pulse oximeter sim-

ulation being fifteen times higher than the broadband reflectance simulation, the broadband re-

flectance simulation relationship between RR and SpO2 is still linear. These results validate our

hypothesis that our smartphone-based pulse oximeter can differentiate between SpO2 values using

the embedded broadband light from the smartphone’s LED, as long as the sensitivity of the smart-

phone camera is large enough. Additionally, extra care must be taken to block ambient light and

reduce motion artifacts to be able to decouple physiological changes from environmental ones.
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3.4.3 Pilot clinical testing

A clinical study was designed to simultaneously capture measurements from our mo-

bile phone low-cost paper filter broadband pulse oximeter (MOXI) and a reference device (Rad87,

Masimo, USA). The study was conducted on twenty-nine healthy volunteers at the Massachusetts

General Hospital Translational Clinical Research Center.

3.4.3.1 Breath-holding procedures

The clinical pulse oximeter finger clip was attached to the middle finger of the right arm

while the index finger rested on the lens of the Pixel 2 smartphone modified to carry a paper filter

that partially covers the lens. Measurements were collected simultaneously using our in-house

developed mobile application, Moximeter. Subjects were asked to exhale and hold their breath for

as long as they comfortably could. This was repeated three times, with two minutes to recover in

between. Subjects were told to begin breathing immediately if their oxygen saturation according to

the clinical pulse oximeter device dropped below 90%.

3.4.3.2 Data processing

The Moximeter application controlled the smartphone’s LED flash and sampled the cam-

era view at 15 Hz. The average pixel intensities of the top and bottom quarter of the camera’s image

were used to generate the broadband and filtered broadband PPG signals. The Moximeter mobile

phone application then applies a Chebyshev Type II filter to remove the non-systemic heart rate

signal. The PPG signals are then band-pass filtered using a sixth-order zero-phase Butterworth filter

to remove out-of-bound noise (0.2 to 5 Hz). RR is calculated over a 1-second sliding window along

the entire time trace. In order to directly compare with the Masimo pulse oximeter, which only out-

puts SpO2 readings every second, data from the mobile application needed to be converted to SpO2

values. This was done using Dr. Hossein Hakim’s conversion [84]: SpO2 = 110− 25×RR. This

conversion assumes a transmission pulse oximeter. Our clinical dataset was fit to the Masimo pulse

oximeter to generate a new SpO2 calibration curve of SpO2 = 109.59 − 54.69 × RR. Readings

were averaged within 1-second bins to directly compare to the 1 Hz Masimo SpO2 values.
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Figure 3.10: Results from comparison of MOXI, our broadband reflectance-based oximeter, with a
clinical grade pulse oximeter. Green lines indicate clinical pulse oximeter readings sampled at 1 Hz.
Red lines indicate calculated arterial blood oxygen saturation measurements using our broadband
oximeter.
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3.4.3.3 Pilot test results

Selected results from this MOXI pilot study are shown in Figure 3.10. In many cases

[Figures 3.10(a), (b), and (c)], we observe a strong overall correlation between SpO2 readings from

our paper filter (red lines) and the finger-clip style Masimo clinical grad pulse oximeter readings

(green lines). Figure 3.10 shows that our D3 design captures the expected delay in SpO2 drop after

initial breath holding. Additionally, the D3 readings correlate well with the minimum SpO2 values

determined by the Masimo baseline.

In some cases, while the overall trends seem to agree, the range of the SpO2 values differ

between the D3 design and the finger-clip oximeter [Figure 3.10(d)]. In other cases, uncorrelated

signal recordings were observed [Figure 3.10(e)]. This seems to indicate that the RR to SpO2

conversion may need to be better calibrated or that MOXI may be highly susceptible to motion

artifacts.

Due to the low-cost nature of our pulse oximeter, and the inherent motion in broadband-

based oximeters, the signal variability is quite high. As a result, more advanced signal-processing

techniques should be further explored and make these measurements practically useful. Neverthe-

less, the matching between our ultra-low-cost pulse oximeter readings to the Masimo device in some

of the subjects is quite encouraging.

3.5 Discussion

The devices above all explore how leveraging mobile phones can be advantageous to

scaling the use of pulse oximeters in LMICs. The D1 device leverages a mobile phone for power,

display, and storage of readings. Although its implementation is the most traditional of the three

devices, the D1 device does possess unique scalability advantages. Typically, finger-clip pulse

oximeters display SpO2 measurements on a small screen on the device but require a connection to

a computer in order to save the readings. By leveraging mobile phones, our D1 device can not only

store a history of past readings but can also easily share them with remote healthcare providers.

Additionally, the Bluetooth connection allows a single mobile phone to connect to multiple devices

for use in resource-starved clinics. Scalability is also achieved by the non-contact design of the D2

device since it requires very low power and can be used by multiple patients in a single site. By far,

however, MOXI is the most portable, requiring merely a colored piece of paper attached to a mobile

phone’s camera. Although different colors of paper filters should be explored, we can reasonably
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assume that using the same phone model and paper manufacturer would achieve comparable results.

Scalability can be easily achieved by simply distributing and downloading a mobile application onto

already ubiquitous smartphones.



CHAPTER 4

Modular Optical Configuration

Analyzer (MOCA)

This chapter is part 1 of 2 of the work addressing the second challenge described in Chap-

ter 1. This chapter will focus on Modular Optode Configuration Analyzer (MOCA), a software

workflow created with the intention of simplifying the design of new modular fNIRS systems.

Although a modular architecture brought about advantages such as portability and high-density

probes, our investigation quickly lead to an unanticipated challenge. As we explored ways to con-

nect modules and methods to efficiently acquire large amounts of data, we realized the vast number

of potential design inputs that affect the final performance of a probe. Additionally, we did not have

a standardized method to compare our designs with existing modular fNIRS designs. There was

simply no way for researchers to systematically perturb the various design parameters that must

be considered when designing new fNIRS systems, so we built one. In this way, the scalability of

the modular architecture attribute is achieved by making our tool open-source, facilitating the com-

parison of existing and design of new modular fNIRS systems. This chapter will detail the MOCA

platform while Chapter 5 will describe the fNIRS system built to translate neuroimaging into natural

settings.

4.1 Introduction

FNIRS is an emerging neuroimaging technique to non-invasively measure brain activity

using non-ionizing light [61]. Unlike functional magnetic resonance imaging (fMRI) [95] that re-

quires high-strength magnetic fields and large scanners, fNIRS utilizes NIR light to detect brain

36
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activation by measuring the associated hemodynamics. The portability of fNIRS positions it as

a competitive imaging modality to address some of the challenges of conventional neuroimaging

techniques, such as fMRI and magnetoencephalography (MEG), including a lack of wearability

for continuous monitoring, limited temporal resolution, and need for subject immobility during

use [22]. It has shown great promise for safe and long-term monitoring of brain activity and is

increasingly used in studies for behavioral [96] and cognitive neurodevelopment [97, 98, 99, 100],

language [101, 102], psychiatric conditions [103, 104], stroke recovery [105], and brain-computer

interfaces [106, 107, 108].

Despite exponential growth in the number of applications [60, 109] and publications [22]

in recent years, many fNIRS systems still employ fiber-based, cart-sized instrumentation [62] that

place limits on both channel density and the use of fNIRS in natural environments. Although fiber-

based high-density [110] and portable [111] fNIRS systems have been demonstrated, the use of

fragile fiber optics cables, stationary external source/detector units [112, 113], and the need for

individual and specialized headgear for specific tasks have motivated the fNIRS community to in-

vestigate more flexible modular and fiber-less designs [114, 115].

The modular fNIRS architecture is based on utilizing elementary optical source and de-

tector circuits (modules) as repeating building blocks to form a re-configurable probe [114]. This

modular architecture offers significantly improved portability, scalability, flexibility in coverage,

and fabrication cost [114]. By avoiding the use of fragile optical fibers, modular fNIRS systems

permit the use of light guides to directly couple light sources and detectors to the scalp, signifi-

cantly reducing signal loss due to fiber coupling. The lightweight and compact modules also make

wearable fNIRS and continuous monitoring in mobile environments possible [22, 20]. In addition,

the ability to use both intra-module (within a single module) and inter-module (source and detector

on different modules) channels allow for high-density probes with varying source-to-detector sepa-

rations (SDSs) that increase measurement density and tissue depth sampling, resulting in enhanced

signal quality, and easy removal of physiological noise [116].

Despite these perceived benefits, the task of designing a modular fNIRS probe can quickly

grow in complexity as the number of modules increases. While parameters can be empirically

determined when designing a single module, understanding the trade-offs among a large array of

parameters, including module shape, module size, optode quantities, and optode locations, and each

parameter’s effects on the final probe can become a daunting task. Not only do most published

modular fNIRS studies largely focus on the design of a single module without addressing the effect

of these module- and probe-level parameters on the final probe, but the current literature also does
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not provide a means to compare probes composed of different module designs.

Aside from the challenges of determining these modular probe core parameters, other

factors such as mechanical, ergonomic, safety, usability, optoelectronic, and data communication

considerations [114] also play important roles in achieving the desired performance. For example,

mechanical features such as optical coupling and electronic circuitry encapsulation must be con-

sidered alongside ergonomic considerations such as comfort, weight, and robustness. Additionally,

the use of high-density light sources in such modular probes brings about additional safety consid-

erations, such as heat dissipation, driving voltage, and battery life. Moreover, optoelectronic con-

siderations arise from the use of specialized optodes with narrow emission bandwidths, high gains,

low noise, and fNIRS-optimized wavelengths. Not only are these specialized optodes more expen-

sive due to their niche applications and characteristics, but they also require more complex control

electronics for driving optodes and acquiring data. With such dense coverage, complex encoding

strategies such as frequency multiplexing [117] become a necessity for obtaining high-density data

acquisition to achieve sufficient spatial and temporal resolution. Finally, while previously reported

modular fNIRS systems often employ daisy-chain communication protocols to connect multiple

modules on a single bus [118, 119, 120, 121, 122], the design of physical inter-module connec-

tions [123], the synchronization method between modules [114], and the transfer of acquired data

become increasingly complex with high module counts and branching connections.

Along these lines, a number of fNIRS data analysis packages exists [124, 125, 126].

However, they focus on the statistical analysis of the data [126, 124, 125] to enhance its quality and

provide guidance on post-processing steps such as motion artifact correction [124]. While some

other tools exist to assist in the probe design [127, 128, 129, 130], most of these tools are designed

to work in a highly constrained design space, where the probe parameters are mostly pre-determined

by the user. As a result, the best practices and trade-offs in modular probe design such as tessellation,

connection, or re-orientation are poorly explored and understood. Therefore, the community is in

great need of an easy-to-use software tool to assist the exploration of and quantitative comparisons

among countless parameter choices in a modular probe design and to perform a limited degree of

optimization within a well-constrained configuration.

A fully-automated probe design and optimization pipeline is impractical without application-

dependent design constraints. Instead, we report a simplified, easy-to-use software toolbox to

help designers navigate the vast parameter space of a modular probe. We also share a number

of fundamental modular probe design strategies, discovered through our explorations via this tool-

box, that are not widely recognized or previously studied. The entire workflow has been imple-
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mented into an open-source, MATLAB-based toolbox called Modular Optode Configuration Ana-

lyzer (MOCA [131]). MOCA supports a list of commonly used module shapes, user-defined optode

layouts, and ROI coverage, and can produce quantitative performance metrics such as distributions

of SD separations, sensitivity maps, and spatial multiplexing groupings. These performance met-

rics also allow comparisons between different designs of modular probes. Although MOCA is not

designed as a fully-automated software that produces “optimal” probes regardless of application, its

unique capability to describe and sweep modular probe parameters in operator-guided interrogations

offers valuable perspective to start approaching the complex modular hardware design problem and

make informed comparisons between well-constrained design choices.

The remainder of the paper is outlined below. In Section 4.2, we discuss the relevant

design considerations when developing a modular probe using MOCA. We specifically focus on

the parameterization of the modules, processes required to assemble modules into functional probes,

and related performance metrics for system characterization and comparisons. In Section 4.4, we

demonstrate MOCA’s capability in designing full-head probes using a variety of module shapes and

compare their trade-offs regarding channel density, SD separations, and average brain sensitivities.

Furthermore, we utilize MOCA to showcase potential improvements to published fNIRS probes by

altering module orientations, spacing, and staggering layouts. In Section 4.5, we highlight a number

of generalizable design strategies that were discovered via our experiments using MOCA, including

the importance of considering module orientations, tiling strategies, and module spacing tuning,

among others.

4.2 Modular Probe Parameters and Performance Metrics

A diagram showing the overall design process of a modular fNIRS system is shown in

Figure 4.1. Specifically, the three parts describing MOCA’s workflow are 1) the design parameters

describing a single module design, 2) the processes and parameters used to assemble the mod-

ules into a probe, and 3) the derived performance metrics used to characterize the resulting probe.

MOCA starts with the definition of essential module parameters (shown in the left column in Fig-

ure 4.1), applies those parameters along with probe-level constraints to a probe-generation process

(center column in Figure 4.1), and derives quantitative performance metrics of the resulting probe

(shown in the right column in Figure 4.1). Arrows in Figure 4.1 define dependencies between

the derived performance metrics and the input parameters. For example, in order to calculate the

probe’s channel distribution, one must define the module geometry, ROI, and optode layout design
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Figure 4.1: Workflow of module-level design parameters (left column; blue) used in probe-level
processes (center column; red) to produce performance metrics to characterize a probe (right col-
umn; green). Performance metrics are organized top to bottom from least complex (two parameters
needed) to most complex (four parameters needed). Arrows trace how parameters are used to derive
specific performance metrics.
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parameters.

4.2.1 Essential module-level design parameters of fNIRS modular probes

The basic building block of a modular probe is an fNIRS module. It is typically in the

form of an optoelectronic circuit made of a rigid [118, 119, 122, 132] or rigid-flex [133, 134] sub-

strate with on-board light sources, optical sensors, auxiliary sensors, microcontrollers, and other

communication electronics. A modular probe is subsequently constructed by replicating and inter-

connecting multiple identical modules. Therefore, the design decisions regarding the module-level

parameters are highly important and directly impact the functionalities and restrictions of the result-

ing probe.

4.2.1.1 Single module geometry

The shape of a module is one of the key parameters when designing a modular system. In

the published literature, simple polyhedral shapes, especially equilateral polygons (square, hexagon,

etc), are typically used due to their simplicity to fabricate, analyze, and tessellate over a target ROI.

It is also possible to design probes that combine multiple polygonal shapes, such as a combination

of hexagonal and pentagonal modules. Such hybrid-shape modular systems may bring advantages

in tessellating curved surfaces, but they also require more complex analyses. MOCA supports a

number of built-in module shapes including three equilateral polygons (triangle, square, hexagon).

In such cases, the module edge length is the only shape parameter that needs to be defined. One

should be aware that a small-sized module requires a large number of boards to cover a given

area, thus resulting in higher fabrication costs and higher complexity in assembly and analysis.

Moreover, a small module size also limits the maximum intra-module SDS. Shorter SD separations

are known to be more sensitive to superficial tissues rather than brain activities. On the other hand, a

small-module size provides better probe-to-scalp coupling when a rigid-board-based module is used.

MOCA provides support for user-specified arbitrary polygonal modules, defined by a sequence of

two-dimensional (2-D) coordinates. Subsequent analyses of these user-defined arbitrary module

shapes only use the bounding box of these polygons when varying probe-level parameters.

4.2.1.2 Target regions-of-interest

An ROI refers to the area of the scalp directly above the cortex for which brain activities

are expected to occur[135]. For simplicity, here we focus on designing probes based on the coverage
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of a 2-D ROI. For generality, MOCA specifies an ROI geometry as a closed polygon made of a

sequence of 2-D coordinates. Users need to specify at least three Cartesian coordinates to define a

closed ROI. In the future, MOCA can potentially be expanded to support three-dimensional (3-D)

surfaces as ROIs through the use of 3-D surface tessellation tools, such as the Iso2Mesh [136] mesh

generator and 3-D photon transport modeling tools such as NIRFAST [137] and MCX [53].

4.2.1.3 Optode layout within a single module

Optode layout refers to the spatial arrangement of optical sources and light sensors within

the boundaries of a single polygonal module. In MOCA, each source and detector position is

defined by a set of discrete 2-D coordinates relative to the module’s center. The 2-D coordinates

define the center of the active area of the light-emitting-diode (LED), laser, or photodetector. The

physical dimensions of the optodes as well as the size and location of electronic components needed

to drive each optode are not considered. The SD separations between all combinations of SD pairs

are derived based on the optode positions.

4.2.1.4 Maximum source-detector separation and maximum short separation channel

MOCA also considers the maximum SD separation (SDSmax) as a key design parameter.

Typically, SDSmax is determined by the SNR of the detected signal [138]. A large SDS has low

detector sensitivity due to the exponential decay of light intensity as SDS increases. This maximum

separation limits the number of inter-module channels that emerge from a particular tessellation of

modules over an ROI. By default, MOCA considers any SDS below 10 mm to be a short-separation

(SS) channel. This threshold can be manually changed to fit any specific optode performance or

probe application. MOCA uses 30 mm as the default SDSmax [139, 140]. MOCA bounds the SD

range by the SS channel threshold and the SDSmax.

4.2.2 Probe-level assembly process parameters

A modular probe is constructed when multiple modules are arranged to form a non-

overlapping coverage of the ROI area. The final probe is dependent on the tessellation (the number

of modules and the spacing between them) and the orientation of each individual module in the

probe.
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4.2.2.1 Exploring module tessellation and probe spacing

MOCA provides a process to tessellate modules over a user-defined 2-D polygonal ROI,

which is generally known as the “tiling” problem in computational geometry [141]. Here, a “com-

plete tessellation” refers to the tiling of an ROI using a single module shape without overlapping

or leaving a gap in coverage. Each of the three built-in polygons (triangle, square, hexagon) have

the ability to cover a 2-D area [142]. MOCA performs the tessellation by first tiling the module

shape along a horizontal axis starting at the lowest vertical coordinate of the ROI until the width

of the row composed of adjacent modules is wider than the width of the corresponding segment

of ROI the row is tiled over. It then repeats this row-generation process until the height of all the

rows combined is larger than the maximum height of the defined ROI. This dimension comparison

in both axes accounts for module shapes with non-vertical and non-horizontal sides. For irregular

module shapes, MOCA uses the maximum width and maximum height of the defined polygon as

the bounding box to create a tiling grid of the module over the ROI. Using the maximum width and

height of the ROI as a guide for tiling ensures the full ROI is covered. Although MOCA offsets and

flips the three equilateral polygon shapes to prevent gaps, irregular module shapes have inherent

gaps between modules when tessellated. Additionally, MOCA accepts manually defined tessella-

tions by reading a sequence of coordinates defining the center of modules to specify each individual

module’s location within the ROI. Following tessellation, each module is assigned a unique index

and an adjacency matrix is constructed to represent which modules are next to one another.

To extend the flexibility of probe creation, users can change probe spacing, the minimum

distance between adjacent modules in all directions. Additionally, a module can be manually deleted

from the tessellation to allow the probe to more closely follow the boundaries of the ROI or better

represent intentional empty spaces in the probe. When individual modules are removed from the

probe, the adjacency matrix is re-calculated from the resulting probe.

4.2.2.2 Guiding module orientation and connection routing

Module orientation refers to the rotation of the module along the normal direction of the

ROI plane. In a “complete tessellation” of the three equilateral polygon shapes, MOCA appropri-

ately flips and translates modules to prevent gaps and overlaps. For tessellations of irregular shapes,

each module is simply placed in the same orientation as it was originally defined. After probe gen-

eration, MOCA allows the user to manually change the orientation of individual modules based on

their assigned indices. For asymmetric optode layouts, changing the module orientation alters the
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SDS of inter-module channels, resulting in different performance metrics.

Additionally, MOCA creates a single sequential path to connect all modules to form a

linear data communication bus, referred to as the “routing” process. In such a path, all modules

are connected and every module is visited exactly once—a classic problem known as the Hamilton

path [143] in graph theory. In most configurations, a Hamilton path is not unique, and computing

such a path is known to be an NP-hard problem, i.e. problems that do not have a polynomial com-

plexity when the node number grows. However, due to the limited module numbers commonly used

in fNIRS probes, an exhaustive search of the adjacency matrix can typically identify all Hamilton

paths in a given tessellation with no more than a few minutes of computation. For any computed

path, MOCA then orients each module based on the angle of a vector defined by the center of the

oriented module and the center of the following module in the path. The orientation angle is relative

to the horizontal axis.

4.2.3 Performance metrics to characterize probes

Each metric described below changes as module- and probe-level parameters are altered

either manually or through MOCA’s sweeping functions. MOCA not only helps unravel the com-

plex interplay between choices of different parameters but also guides the probe designer in making

trade-offs between conflicting design targets—improving one metric may come at the risk of wors-

ening another. We have chosen the following set of essential performance metrics due to their ability

to easily inform a breadth of end-user probe requirements such as cost, weight, depth sensitivity,

and sampling rate estimates.

4.2.3.1 Total module and optode counts

Based on the module design and tessellation, MOCA computes the total number of mod-

ules, nm, needed to cover the ROI. In addition, MOCA also outputs the total number of sources (ns)

and detectors (nd) of the final probe. All modules, sources, and detectors of an assembled probe are

given unique identifiable index numbers (mi, si, and di, respectively). Module and optode counts

are performance metrics outputted by MOCA from which cost, weight, and power estimates can be

deduced.
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4.2.3.2 Inter- and intra-module channel distribution

For any assembled probe, MOCA generates histograms of the SD separations for all com-

binations of SD pairs. Particularly, it outputs separately the distribution of inter- and intra-module

channels that are below the SDSmax previously defined by the user. These channel distributions

aid the user in designing the probe based on the targeted application and population. For example,

shorter channels are more applicable to infant populations. Additionally, MOCA outputs channel

density, a metric commonly used for fNIRS probe benchmarking. Channel density is defined as

the number of channels, nchannels, divided by the area of the ROI [114]. Furthermore, MOCA can

provide a spatial plot overlaying channels on the assembled probe, allowing for visual inspection of

low channel density areas within the probe.

4.2.3.3 Spatial brain sensitivity

Brain sensitivity (Sbrain) refers to the magnitude of the measurement signal change at a

detector given a localized perturbation of optical properties of brain tissue [144]. A higher Sbrain

value suggests the probe is more sensitive to the anticipated brain activation. It is calculated from

the spatial probability distribution of photons scattering through complex tissue as they travel from

the source to the detector [145]. Although modeling 3-D head/brain anatomies and 3-D based light

simulations have been reported, including several related works from our group [136, 146, 147,

148], we deliberately chose a simplified layered-slab head model and 2-D based probe layout as

default models to evaluate a modular probe in MOCA. Such a decision was largely motivated by 1)

significantly faster computation and pre-/post-processing to accommodate fast sweeping of a large

parameter space, and 2) avoiding another added layer of complexity when probe design is coupled

with underlying brain anatomy in a 3-D head model. A comparison between Sbrain computed by

2-D and atlas-based analyses is provided in the Results section of this chapter. Nonetheless, MOCA

can export 2-D probe data to established 3-D probe modeling toolkits, such as AtlasViewer [130]

and MCX [136], to perform more advanced analyses when 3-D head models are necessary.

MOCA uses a five-layer slab model consisting of tissue imitating the scalp, skull, cerebral

spinal fluid (CSF), white matter (WM), and gray matter (GM) to determine the spatial sensitivity

profile for each SD pair in a probe [149]. The thickness of each tissue layer in the slab is set to the

average thickness of that tissue type computed using the top half of a tetrahedral brain model [150].

We define the brain region as the combination of gray matter and white matter tissues. The optical

properties and resulting thicknesses for each tissue type are summarized in Table 4.1.
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Table 4.1: Optical properties used in the slab model for calculating brain sensitivity. The thickness
of each layer is derived by dividing the total tissue volume by the tissue’s surface area from a
tetrahedral five-tissue brain model. The absorption coefficient, µa, is the average path a photon will
travel in the medium before being absorbed. Similarly, the scattering coefficient, µs, defines the
average path length of photons before a scattering event. Anisotropy, g, is a unit less measure of the
amount of forward direction retained after a single scattering event.

Tissue Type µa [mm−1] µs [mm−1] g Thickness [mm]

Gray Matter 0.020 9.000 0.89 7.25
White Matter 0.080 40.900 0.84 4.00
Cerebral Spinal Fluid 0.004 0.009 0.89 2.73
Skull 0.019 7.800 0.89 3.29
Scalp 0.019 7.800 0.89 4.23

For each SD pair in the assembled probe, 3×108 photons are simulated using our in-house

3-D Monte Carlo photon transport simulator, MCX [136], using a pencil beam source and a single

1.5 mm radius detector placed at the surface of the slab at its corresponding SDS. In a voxelated

grid, Sbrain is defined as a ratio dividing the region-wise summation of the sensitivity matrix in

each brain tissue region by the summation of the entire sensitivity matrix for each source-detector

separation [145], i.e.

Sbrain(s, d) =

∑
r∈ΩGM

J(r, s, d) +
∑

r∈ΩWM
J(r, s, d)∑

r∈Ω J(r, s, d)
, (4.1)

where the sensitivity matrix, also known as the Jacobian (J), is computed using the adjoint Monte

Carlo method [26]. In addition to Sbrain, MOCA also calculates the average brain sensitivity for

the entire probe, Sbrain, based on all the SD separations above the SS threshold. SS channels

are excluded in the calculation of Sbrain because, by definition, they are designed to only sample

superficial layers [145].

4.2.3.4 Spatial multiplexing groups

The density of assembled modular probes may impact the probe’s temporal sampling rate

when illuminating each source sequentially. MOCA introduces spatial multiplexing, an encoding

strategy that can potentially accelerate data acquisition by simultaneously turning on multiple light

sources at the same time. Because of the high attenuation of light in the head and brain tissues at

large separations, MOCA can ignore the cross-talk of light sources that are far away for a given de-

tector and assign sources into a spatial multiplexing group (SMG) so that all sources within an SMG

can be turned on simultaneously. By default, MOCA uses the SDSmax as the minimal distance be-
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tween sources. This distance, however, can be defined by the user. Notably, unlike frequency multi-

plexing, spatial multiplexing does not require extra energy-intensive hardware or post-measurement

separation of combined signals.

The search for the SMG starts by randomly specifying a source position as the seed; a

circle of radius SDSmax centered at the seed position is drawn and a random source outside of

this circle that is at least 2×SDSmax away is picked; the above process repeats until no additional

source can be found. Once an SMG is identified, a new source that does not belong to any existing

SMG is selected as the new seed for the next SMG, and the above process repeats until every source

is allocated. The total number of spatial multiplexing groups, nSMG, depends on the tessellation

of the module over the ROI as well as the choice of the seed position. As with channels, the

nSMG are for a single wavelength. Thus, when estimating the total sampling rate of the probe

using dual-wavelength sources, the control unit must cycle through each group twice (once for each

wavelength).

In addition to nSMG, MOCA calculates the spatial multiplexing ratio (SMR), defined as

SMR = ns/nSMG. This ratio is interpreted as the acceleration factor of the data acquisition speed

when using spatial multiplexing. For example, for a 20-source probe, an nSMG of 5 can accelerate

the data acquisition by a factor of SMR = 20/5 = 4 fold.

4.3 Additional Functionalities

MOCA was created as an exploratory tool to interrogate specific design parameters and

reveal the trade-offs, within a well-constrained search space, regarding specific design decisions.

MOCA possesses functions to facilitate changing probe-level parameters and exporting the desired

probe for use in existing probe design tools such as AtlasViewer.

4.3.1 Parameter sweeping

4.3.1.1 Altering spacing between modules

An optional parameter during module tessellation is probe spacing—a uniform distance

assumed between adjacent modules. The spacing sweep function varies the probe spacing within

a user-defined range in user-defined increments. For the three built-in polygons (triangle, square,

hexagon), spacing is increased between all adjacent sides of the modules within the probe. For

arbitrary shapes, spacing is added to the horizontal and vertical sides of the rectangular bounding
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box. The number of modules required to cover the ROI is continuously adjusted as probe spacing

is varied. The performance metrics for each of the resulting probes are reported by MOCA as a

function of probe spacing.

4.3.1.2 Exhaustive search of module orientations

MOCA provides a limited orientation enumeration function to re-orient modules through

a predefined number of orientations. For the three built-in polygons, the default number of re-

orientations per module is simply the number of sides of the polygon. For arbitrary shapes, the

default number of re-orientations is four based on the bounding box. Additionally, a user can de-

scribe the number of orientations for any shape. MOCA re-orients modules in evenly spaced angle

increments. An exhaustive search is performed using the number of modules in the probe and

the number of user-defined orientations. Each probe resulting from each permutation of module

re-orientations is characterized by MOCA and reported as a function of various probe layouts.

4.3.1.3 Staggering rows of modules

Staggering modules refers to shifting a row (or column) of tessellated modules in the x (or

y) axis. Staggering is performed on tiling grid probe layouts. Adjusting this probe-level parameter

is particularly useful for improving probes composed of modules with symmetrical optode layouts,

where re-orienting modules does not affect SDS, or when high-density probes are needed, where

probe spacing cannot be increased. A user defines both the range and increment by which to offset

a particular row. Each resulting probe is analyzed and the corresponding performance metrics are

calculated. MOCA then reports a plot of the Sbrain, spatial multiplexing ratio, and the number of

channels for each staggered probe.

4.3.2 Exporting probes for use in AtlasViewer

MOCA performs its analysis of module- and probe-level parameters on an infinite slab

model derived from the Colin27 atlas. When 3-D analysis is desired, MOCA can export the probe

layout to a “.sd” file for use in “SDgui” – a built-in tool of AtlasViewer [130] used for creating

and editing “.sd” files. To properly represent a modular probe layout in AtlasViewer (which treats

all optodes individually without a reference to a module), MOCA first translates the module-level

parameters by creating fixed/rigid springs between all optode pairs (source-source, source-detector,
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and detector-detector) within each module. These fixed springs maintain the relative optode lay-

out within each module while permitting bending at the junctions between springs. MOCA then

adds fixed springs between each inter-module channel (SD pairs between modules with distances

below the SDSmax) to translate the probe-level parameters (spacing, orientation, staggering). As

an additional constraint, MOCA adds flexible springs (springs of length -1) for inter-module chan-

nels above the SDSmax. Finally, to register the probe to the surface of the selected atlas, MOCA

adds three dummy optodes to the exported “.sd” file. All three optodes are placed at the midpoint

between the minimum and maximum x coordinates of all optodes in the probe. The y coordinate

of the first, second, and third dummy optodes are set to the minimum y coordinate, midpoint, and

maximum y coordinate of all optodes in the probe, respectively. The first, second, and third dummy

optodes are assigned to the “Fpz”, “Cz”, and “Oz” positions, respectively, in the standard 10-10

system. This places any MOCA-designed probe at the top of an atlas by default. A user can change

the dummy optode anchors to re-position the probe on an atlas. The exported “.sd” file can then be

loaded into AtlasViewer for placement on a generic or subject-specific atlas (Figure 4.2).

4.4 Results and Practical Examples

In this section, we first validate the Sbrain derived from a simplified five-layer slab model

against previously published atlas-based Sbrain results [144]. Then we demonstrate how the module-

level parameters of MOCA can be used to characterize and compare full-head probes composed of

different choices of elementary module designs. Lastly, we show examples using MOCA’s assem-

bly processes as investigational tools to potentially improve existing designs by altering probe-level

parameters such as probe spacing, module orientations, and the staggering of modules within an

assembled probe.

4.4.1 Slab-based brain sensitivity corresponds with atlas-based sensitivity

Figure 4.3 shows Sbrain calculated using our five-layer slab model at SD separations

ranging from 1 to 60 mm in 1 mm increments (blue line). We also overlay full-head averages of

Sbrain and standard deviations at 20, 25, 30, 35, and 40 mm separations from a previously published

study [144] using the Colin27 atlas.

Simulations on a five-layer slab model show an increase in Sbrain as SDS increases. Ad-

ditionally, Sbrain for SD separations below 10 mm is less than 1.17%. At 20, 25, 30, 35, and 40 mm
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Figure 4.2: Example probe exported for use in AtlasViewer. (a) A four-module probe with three
sources (red circles) and two detectors (blue crosses) plotted using MOCA. Intra- (blue) and inter-
module (orange) channels are shown in solid lines. (b) Imported probe in SDgui. Solid lines rep-
resent fixed springs. Dashed green lines represent flexible springs between sources and detectors.
Three dummy optodes (numbered 21, 22, and 23) are shown in black. (c) The resulting probe in
AtlasViewer registered to an atlas using the dummy optodes as anchors.
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Figure 4.3: Results comparing brain sensitivity derived from finite slab models used by MOCA
and atlas-based models. The blue line shows calculated brain sensitivity based on a five-layer slab
model for SD separations from 0 to 60 mm in 1 mm increments. Overlaid in black are the brain
sensitivity results calculated from an atlas by averaging brain sensitivity for fixed source-detector
separations across nineteen locations in the international 10-20 system.

separations, the maximum difference between the atlas-based and slab-based Sbrain values is less

than 0.6%. Figure 4.3 demonstrates that using a 2-D approximation of the ROI and a layered brain

structure provides a reasonable trade-off between accuracy and computational efficiency, especially

for high-density probe characterization.

4.4.2 Comparison between sample modules of various shapes.

MOCA allows the comparison of a wide range of fNIRS module designs by quantifying

the effects of probe-level design parameters on a probe’s performance. As a showcase, here we

report the results from a comparison of three equilateral module shapes (square, hexagon, and tri-

angle) with the same optode layout tessellated over a 200×200 mm2 ROI, derived from the average

surface area of the top half of an adult male head [151]. Square [118, 119, 120] and hexago-

nal [121, 132, 122] fNIRS modules have been extensively studied in literature and are chosen here

for a quantitative comparison. While an equilateral triangle has not been reported in published

module designs, we include it here because of the potential suitability for better tessellation of a

3-D surface in future extensions. With this comparison, we want to demonstrate both the scalability
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Table 4.2: Summary of quantitative performance metrics derived by MOCA when tessellating the
three elementary module shapes over a 200×200 mm2 region of interest.

Row Performance Metric
Square-based

probe
Hexagon-based

probe
Triangle-based

probe

1 Total modules [N] 36 42 40
2 Total optodes [N] 144 168 160
3 Total channels [N] 324 405 496
4 Intra-module channels [N] 180 237 336
5 Inter-module channels [N] 144 168 160
6 % of channels that are inter-module [%] 55.56 58.52 67.74
7 Average brain sensitivity [%] 7.52 ± 1.95 6.50 ± 2.44 8.83 ± 3.10
8 Average intra-module brain sensitivity [%] 6.44 ± 2.10 6.44 ± 2.10 6.44 ± 2.10
9 Average inter-module brain sensitivity [%] 8.82 ± 0.00 6.54 ± 2.66 9.94 ± 2.86
10 Spatial multiplexing groups [N] 9 8 13
11 Spatial Multiplexing Ratio 8 10.5 6.15

of MOCA in analyzing full-head probes and how performance metrics change across module-level

design decisions.

As mentioned above, MOCA systematically tessellates the target ROI using the module

geometry and assigns each module an index number. If not considering within-module optode

locations, only translation is needed for both square and hexagon modules to completely cover a

region. For the triangle shape, MOCA rotates every other triangle and its optodes 180 degrees

to fill the ROI without leaving any gaps. No other probe-level parameter changes are made for

this comparison. Probe spacing is set to zero. The default SS threshold is set to 10 mm and the

SDSmax is set to 30 mm. The minimum distance between sources used in calculating SMGs is

set to 2×SDSmax. To avoid simultaneously changing multiple parameters and only focusing on

module shape, an identical optode layout made of two sources and two detectors is used in all three

module designs in this example. The edge length of the square is set to 33.33 mm, determined by

the average length of three previously reported square-shaped module designs [118, 119, 120]. The

edge length of the hexagon and triangle is set to 20.68 and 50.65 mm, respectively, calculated to

achieve the same area as the square module. The three-module designs as well as the tessellation of

the hexagon-based probe over the ROI are shown in Figure 4.4. The derived performance metrics

for each of the three sample probes are summarized in Table 4.2. The results that follow are only

applicable to the specific module- and probe-level parameters chosen for this showcase.
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Figure 4.4: Elementary module designs used in a full-head comparison. (a), (b), and (c) show
the perimeter of the square, hexagon, and triangle-based module designs, respectively. The optode
layout of all three shapes is identical. Red circles represent sources while blue crosses represent
detectors. (d) Tessellation of the hexagon module over an ROI. The dashed green line outlines the
200×200 mm ROI.
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4.4.2.1 Effect of module shape on channel separation distributions

Figure 4.5 shows a histogram of the SD separations of the full-head (200×200 mm area)

probe composed from the three selected module shapes. Table 4.2 shows that the number of modules

needed to cover the ROI varies for each shape due to the complete coverage constraint enforced by

MOCA for this showcase [Figure 4.5(d)]. Since each module utilizes the same optode layout, the

intra-module channel distributions [blue bars in Figures 4.5(a), 4.5(b), and 4.5(c)] are simply scaled

by the total numbers of modules needed to completely cover the ROI. The SDS of inter-module

channels are dependent on the module shape, resulting in varying inter-module channel distributions

between all three probes [orange bars in Figures 4.5(a), 4.5(b), and 4.5(c)].

For this particular example, the triangle-based probe reports both the highest number of

total channels [Figure 4.5(d)] and the largest SD separations of all three tessellated probes [Fig-

ure 4.5(c)]. The hexagon-based probe appears to have the shortest inter-module channels [Fig-

ure 4.5(b)]. Due to its symmetry and given the SDSmax setting, the square-based probe happens

to have all SD separations at 24 mm. Notably, the triangle-based probe adds the most inter-module

channels, almost twice the number of intra-module channels [Figure 4.5(d)], while also requiring

two fewer modules than the hexagon-based probe (Table 4.2, Rows 1-5). Figure 4.5(d) also shows

that the number of inter-module channels is greater than the number of intra-module channels for

all three probes.

4.4.2.2 Combining intra- and inter-module channels for brain sensitivity

The Sbrain values derived from the three probe designs, grouped by intra-module chan-

nels, inter-module channels, and all channels, are summarized in Figure 4.6. Only channels above

the SS threshold and below the SDSmax are used. Despite having the fewest total channels (Ta-

ble 4.2, Row 3), the square-based probe results in a higher Sbrain than the hexagon-based probe.

For the square- and triangle-based probes, the use of inter-module channels increases the probe’s

Sbrain as compared to simply using intra-module channels alone. For the hexagon-based probe,

Sbrain computed using only intra-module channels is similar to that when using only inter-module

channels (6.44% vs 6.54%). Due to having the same optode layout, the intra-module Sbrain is the

same for all three probes.
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Figure 4.5: Channel distributions and total channel counts resulting from the tessellation of the
three elementary module shapes over a 200×200 mm2 region of interest. (a-c) Resulting intra- and
inter-module channel distributions for square, hexagon, and triangle module-based probes. (d) The
total channel count of each probe grouped by intra- and inter-module channels.
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Figure 4.6: Resulting average brain sensitivity organized by intra- and inter-module channels
for square-, hexagon-, and triangle-based probes tessellated over a 200×200 mm region. Short-
separation channels are excluded from all calculations.

4.4.2.3 Effect of module shapes on improving sampling rate

The total ns compared to the nSMG arising from the tessellation of each module over

the ROI are compared in Figure 4.7(a). The total number of sources for the square-, hexagon- and

triangle-based probes are 72, 84, and 80, respectively. Figure 4.7(b) overlays the first SMG over

the triangle-based full-head probe. Using the nSMG for each probe (Table 4.2, Row 10), the SMR

(the ratio between ns and nSMG) is 8, 10.5, and 6.15 for the square-, hexagon-, and triangle-based

probe, respectively. This result indicates that the hexagon-based probe’s sampling rate can benefit

the most when using group-based spatial multiplexing.

4.4.3 Improving existing probes through probe-level parameter alterations

The ability to compute performance metrics from basic design parameters allows users

to explore probe-level alterations and potentially improve existing probes using MOCA. Here, we

simulate and alter published examples to demonstrate how even simple module layout changes

such as rotating selected modules, altering probe spacing, and staggering modules can potentially

improve published probe designs.
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Figure 4.7: Spatial multiplexing group results from the tessellation of the square-, hexagon-, and
triangle-based probes. (a) Comparison of the total number of sources (orange) and the total number
of spatial multiplexing groups (green). (b) The triangle-based module tessellation with sources (red
circles) and detectors (blue crosses). The dashed red circles indicate the “effective” region (30 mm
radius) of each of the nine sources in the first spatial multiplexing group. The nine sources turned
on simultaneously in this group are indicated by filled-in red circles.

4.4.3.1 Effect of optode orientation on probe characteristics

Re-orienting modules within existing probes alters the SDS distribution and, consequently,

the probe’s Sbrain and SMR. In Figure 4.8, we simulate a 36 mm2 square module in a probe config-

uration inspired by the µNTS fNIRS module described in Chitnis et al. [118]. The modules in the

initial tessellation are oriented in the same direction as in the original paper [Figure 4.8(a)]. In our

investigation, the spacing between each module is set to 5 mm and the SDSmax is set to 30 mm.

Each module has 2 sources and 4 detectors, resulting in 8 intra-module channels per module ranging

from 8 to 29 mm. A total of 256 different probe configurations result from exhaustively re-orienting

each module individually by 90 degrees. Without losing generality, a subset of 128 layouts are

shown in Figure 4.8(b) to show the range of the variations.

Of the 256 possible layout configurations, 8 of those layouts result in a maximum average

brain sensitivity of 9.87%. These 8 layouts also achieve the minimum number (nSMG = 4) of spa-

tial multiplexing groups. The intra- and inter-module channel distribution and channel count result-

ing from the MOCA analysis of the original probe layout are shown in Figure 4.8(d). Figure 4.8(c)

shows the same 4-module probe but constructed with the bottom-left and top-right modules rotated
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Figure 4.8: A 4-module probe simulated using MOCA. (a) All modules are oriented in the same
direction. Red circles represent sources and blue crosses represent detectors. An exhaustive search
of all combinations of orientations for each of the four modules results in 256 possible layouts.
The average brain sensitivity and number of spatial multiplexing groups for the first 128 layouts are
shown in (b). The original layout (layout number 1) is highlighted in the red square. An example
layout with the maximum possible brain sensitivity (layout number 66) is highlighted in the green
square. (c) A visual representation of layout 66 with the bottom-left and top-right modules rotated
90 degrees clockwise with respect to orientation in (a). Intra- and inter-module channel distribution
resulting from the original layout is shown in (d). Channel counts resulting from the probe configu-
ration in (c) are shown in (e). In both channel distribution histograms (d, e), intra- and inter-module
channels are shown in blue and orange, respectively. Dark orange indicates overlapping histogram
counts.
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90 degrees clockwise, corresponding to layout number 66 in Figure 4.8(b). Using MOCA, the

spatial channel plot overlaid onto this re-oriented probe shows a denser coverage of the center of

the ROI compared to the original probe layout. The channel count distribution of this re-oriented

probe is shown in Figure 4.8(e). As expected, the intra-module channels in Figure 4.8(a) and Fig-

ure 4.8(c) are identical. However, re-orienting the two modules produces a shift towards longer

separation inter-module channels that are known to be more sensitive to brain tissues. The number

of inter-module channels within the 10 to 20 mm range decreases from 8 to 4 and the number of

29 mm separation inter-module channels increases from 2 to 12 upon re-orienting the 2 modules.

The re-orientation of modules not only allows the probe to have more long-separation channels, but

it also increases the total number of inter-module channels from 14 to 20 [Figures 4.8(d) and 4.8(e)).

Additionally, Sbrain of the probe increases from 8.56% to 9.87% [Figure 4.8(b)] while the number

of spatial multiplexing groups, and subsequently the probe’s sampling rate, remains the same.

4.4.3.2 Effect of probe spacing on probe performance

Probe spacing—the distance between edges of adjacent modules in a probe—is a param-

eter that can vary the resulting channel distribution and channel density of a probe by altering the

relative distances between optodes on neighboring modules. To investigate the effect of this pa-

rameter, in Figure 4.9, we simulate the probe layout described by Zhao et al. [122], which utilizes

hexagonal-shaped LUMO fNIRS modules developed by Gowerlabs [152]. The length of each side

of the hexagonal-shaped module used in our investigation is set to 18 mm and each module contains

three sources and four detectors. The SDSmax is set to 30 mm. A uniform spacing is set between

all adjacent modules. Probe spacing is varied from 0 to 30 mm in 1 mm increments.

When all modules are densely packed with a spacing of 1 mm, the probe results in 328

total channels (184 of which are inter-module channels), an Sbrain of 5.95%, and 12 SMGs. When

the probe spacing is increased to 6 mm, the number of channels and spatial multiplexing groups

remain the same while the Sbrain increases [Figure 4.9(b)]. The increase in Sbrain arises due to the

overall increased distances between sources and detectors of inter-module channels which sample

deeper into the brain tissue. This results in a local maximum Sbrain of 7.87%.

When we increase probe spacing to 8 mm, the inter-module channel separations increase

to above the SDSmax. This decreases the number of “usable” inter-module channels and the probe’s

Sbrain. The SMR remains unchanged between 6 and 8 mm probe spacing. Above 11 mm, the

increase in probe spacing increases the relative distance between adjacent sources, allowing more
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Figure 4.9: An analysis of hexagonal modules in a twelve-module probe. (a) Green arrows indicate
the distances between modules as probe spacing varies. (b) The total channel count, average brain
sensitivity, and the spatial multiplexing ratio at probe spacing values between 1 and 30 mm. Module
orientations are held constant.
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sources to be turned on at the same time and decreasing the nSMG needed. This trend continues

as we increase probe spacing. Consequently, the probe’s Sbrain reaches a minimal plateau of 3%

at 15 mm spacing and beyond because only intra-module channels above the SS threshold remain

within the SD range [Figure 4.9(b)]. Similarly, since modules are further apart, the nSMG continues

to drop which increases the SMR (and the sampling rate of the probe when spatial multiplexing

encoding is utilized). At 29mm spacing, the SMR value is 12 due to only 3 spatial multiplexing

groups needed (one for each of the 3 sources on each module).

4.4.3.3 Effect of staggering modules on probe characteristics

Staggering adjacent modules within a high-density probe can increase inter-module SD

separations to improve performance. To demonstrate the effect of staggering on the resulting probe,

in Figure 4.10 we simulate a 42 mm2 square module in a 3×1 layout configuration inspired by

M3BA modules [119]. Each of our simulated modules contains two sources and two detectors.

The probe was staggered by translating the center module between 0 mm and 42 mm along the

horizontal axis.

In Figure 4.10(a), we overlaid the intra- (blue) and inter-module (orange) channels over

the three-module probe. The resulting channel distribution shows 12 intra-module channels at

28 mm and 4 inter-module channels at 14 mm SD separations [Figure 4.10(b)]. The Sbrain of

this probe using all channels is 8.79% [Figure 4.10(c)]. When analyzed separately by intra- and

inter-module channels, the Sbrain using only intra-module channels (10.75%) is larger the Sbrain

when using only inter-module channels (2.9%) since in this tessellation intra-module channels are

larger and probe deeper into the tissue.

In Figure 4.10(c), we show the effect of staggering the tessellated module layout by trans-

lating the center module along the horizontal axis. This alteration increases the inter-module channel

separations. Consequently, the Sbrain due to only inter-module channels increases until the inter-

module channel separations are larger than the SDSmax. The Sbrain using all channels increases

from 8.79% in the original tessellation to a maximum of 10.95% in the staggered tessellation at

26 mm. The nSMG between the two layouts remained the same until a staggering amount of 31 mm

at which point the sources are far away enough to group them together [Figure 4.10(f)].
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Figure 4.10: An analysis of square modules in a three-module probe. (a) A traditional three-module
tessellation. Red circles represent sources and blue crosses represent detectors. (b) The resulting
intra- and inter-module channel distribution from the probe layout in (a). (c) The average brain
sensitivity for each layout resulting from module staggering. (d) The center module staggered by
26 mm, resulting in increased channel separation for inter-module channels, as shown in (e). (f) The
total channel count and the number of spatial multiplexing groups of the probe layout as the center
module is staggered.
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4.5 Discussion

Through the case studies shown in the above section, we demonstrate the high complexity

of designing a modular probe, where even adjusting a single parameter may have a profound impact

on other parameters as well as the overall performance. Despite the fact that MOCA only permits

operator-guided parameter interrogation in a well-constrained problem, the results from the above

experiments did reveal a number of important design strategies that were not previously discussed

in literature, including the effect of module re-orientation, fine-tuning the space between modules,

and module staggering to potentially improve existing fNIRS probes.

Figure 4.5 reveals that, despite having the same optode layout, probes composed of dif-

ferent module shapes covering the same ROI result in different channel distributions. Although

the inter-module channels are identical between modules, the resulting total number of channels is

related to the number of modules needed to cover the ROI. The effect of module shape on channel

distribution is complex and requires a tool like MOCA to thoroughly investigate. Certain module

geometries result in optodes closer to the module’s edges, effectively shortening inter-module chan-

nels in completely tessellated probes. Because the optode layout in Figure 4.4 is not completely

symmetric and each module shape is an equilateral polygon, each individual module can be re-

oriented without overlapping while maintaining the complete tessellation of the probe. While not

altering intra-module channel distributions, these orientation configurations spatially alter channel

locations and alter inter-module channel separations. The results from Figure 4.5 also show how

some individual module shapes may be more appropriate for certain subject populations. For exam-

ple, the high count of 19 mm inter-module channel separations in the hexagon-based probe makes

it better suited for infant populations. An important takeaway is that the number of inter-module

channels of an assembled probe is not a simple multiplicative factor of the number of intra-module

channels. These results demonstrate the dependency a probe’s derived characteristics have on mod-

ule shape even when different modules have the exact same optode layout.

The results in Figure 4.6 provide a counter-example where higher channel density due to

increased inter-module channels may not necessarily improve all performance metrics of a probe.

Despite having fewer total channels than the hexagon-based probe, the square-based probe results

in a higher average brain sensitivity (Sbrain) due to larger inter-module channel separations. This

reveals the trade-offs in performance metric improvement, emphasizing the need for Sbrain to be

considered in conjunction with channel distribution when comparing probes. Additionally, this

analysis reveals that the use of inter-module channels in addition to intra-module channels does
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not always lead to increased Sbrain for probes based on different module shapes. In fact, the use

of only inter-module channels increases the average penetration depth for the square- and triangle-

based probes due to the larger channel separations. However, for the hexagon-based probe design

in this example, Figure 4.6 demonstrates that the contribution to Sbrain from using only intra- or

only inter-module channels differed by merely 0.1%. These results show that adding inter-module

channels to intra-module probes will not always result in improved Sbrain. Thus, users of this par-

ticular hexagon-based probe may benefit from the simplicity and faster sampling rate of using only

intra-module channels rather than implementing a potentially complex data acquisition method to

capture inter-module channels. Although ignoring inter-module channels can increase the sampling

rate without affecting Sbrain for this particular probe, it does result in fewer channels and lowers the

channel density of the probe. Through this complex example, we show that it is non-trivial to con-

sider all constraints in a modular probe. MOCA is positioned as a tool to help designers challenge

hypotheses, explore alternative designs, and quantify various trade-offs.

Figure 4.7 indicates that the hexagon-based probe can achieve the highest sampling rate

among the three configurations if a spatial multiplexing encoding strategy is implemented. The

frame rate of a sequential encoding strategy is dependent on the total number of sources (ns) be-

cause each source needs to be turned on and sampled once. Spatial multiplexing allows multiple

sources within a group to be turned on simultaneously, allowing the sampling rate to increase by a

factor of ns/nSMG, defined as the SMR. Therefore, despite having the lowest sampling rate when

sampled sequentially due to the highest ns (Table 4.2, Row 1), the hexagon-based probe has the

fastest sampling rate of the three probes when spatial multiplexing is used due to the low nSMG

[Figure 4.7(a)]. These results demonstrate that a probe’s sampling rate can be increased not only

through firmware changes or advanced electronics but also by using different module shapes with

the same optode layout.

While MOCA’s ability to change module-level parameters helps design new fNIRS mod-

ules, its ability to sweep through probe-level parameters helps potentially improve existing ones.

Figure 4.8 shows how probes based on published modules can potentially improve Sbrain at no in-

creased cost and without re-designing modules by altering the orientations of modules that make up

the probe. The orientation changes in layout 66 [Figure 4.8(c)] increase the channel density at the

center of the ROI, but also increase the number of inter-module channels by 43%. The emerging

inter-module channels also have larger SDS and contribute to an increase in Sbrain without chang-

ing the SMR. The re-oriented probe in Figure 4.8(c) is only a representative case of how a 2×2

probe composed of square modules can be potentially improved and is exhaustive only because the
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number of possible orientations of each of the 4 modules was limited to 4, resulting in 44 = 256

probe layouts to analyze. Additionally, the re-orientation of modules causes changes to performance

metrics due to the asymmetry of the optode layout within each module. If the optode layout was

symmetric, re-orienting modules would have no effect on either inter- or intra-module channels.

In Figure 4.9, we investigated the effect of spacing between modules on the derived per-

formance metrics of a probe composed of hexagonal-shaped modules. The results suggest that

varying module spacing does have an impact on Sbrain. Since optodes are generally placed near the

edges of the modules to maximize intra-module channel separations, dense probes with modules

near one another tend to have shorter inter-module channel separations. This trend becomes more

apparent as the size of the module increases. Increasing the probe spacing increases the distance

between optodes on neighboring modules, thus increasing the Sbrain in the process. This increase

in Sbrain, however, has a local maximum. As shown in Figure 4.9, further increasing probe spacing

leads to a drop in the number of inter-module channels as their SD separations become greater than

the separation limit (SDSmax). Additionally, increasing the distance between modules reduces the

number of multiplexing groups (nSMG) which increases the SMR and consequently the probe’s

sampling rate. Once the probe spacing exceeds the user-specified SMG diameter, one source on

each module can be turned on at the same time because each source would be outside the other’s

“effective” region. Because the distance between sources on the same module does not change, a

different SMG is required for each source within a module. Thus, the limit to the minimum nSMG is

equal to the number of sources on a single module, revealing a minimum improvement in sampling

rate due to spatial multiplexing encoding. Compared to a sequential sampling strategy, a spatial

multiplexing encoding strategy will increase a probe’s sampling rate by at least a factor equal to the

number of sources on one module. Figure 4.9 shows that probe spacing can both alter nSMG to

help meet sampling rate requirements and alter inter-module channel separations to meet channel

distribution needs.

Figure 4.10 shows that staggering a probe layout can increase Sbrain in dense probes.

Simulations using a published module shape [119] with zero probe spacing results in inter-module

channels of 14 mm separations. These channels are too long to be SS channels and too short to

be long-separation (LS) channels. Staggering spatially increases inter-module channel separations

while maintaining the compactness of a probe [Figure 4.10(c)]. This improvement works with

square or rectangular modules since staggering is done by translating user-specified modules along

a horizontal or vertical axis. For module designs with symmetrical optode layouts, we recommend

staggering probe layouts by translating every other module row by half of the module’s maximum
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width in one axis [Figure 4.10(f)]. This ensures the optodes from the translated module are well

separated from modules of the adjacent rows.

The results above are derived from investigating the module- and probe-level design pa-

rameters that MOCA currently supports. However, this only represents a small subset of the general

parameters previously used in evaluating a modular probe [114]. For example, user feedback-based

design parameters not yet accounted for in MOCA include conformability (a module’s ability to

conform to a curved surface), subject comfort, and safety limits such as operating voltage and heat-

ing effects. Source output power and module weight each require external instrumentation measure-

ments while noise-equivalent power and dynamic range calculations require lab-specific phantoms.

Power consumption depends on the type of optodes used as well as the control electronics of the

individual module while a probe’s battery life can be adjusted using existing off-the-shelf compo-

nents. Each of these design parameters are based on specific electronic or material components

chosen for a particular module design. MOCA was built to easily scale and incorporate more com-

plex mechanical-, ergonomic-, safety- and experiment-specific considerations in the future as those

design parameters are evaluated.

There are limitations to MOCA’s current minimal subset of design parameters. First, the

ability to re-orient, increase spacing, or stagger modules assumes that modules can be connected in

any orientation. This is true for many published modular designs where cables of different lengths

can be easily connected to the top of a module, but does not necessarily apply to more sophisti-

cated designs that have embedded printed flex connectors or utilize headgears with pre-determined

mounting locations. Second, MOCA does not currently support multiple module shapes within the

same probe or different optode layouts on different modules. Third, MOCA’s channel count out-

put does not include wavelength count as a multiplier. This approach allows one to quickly scale

the channel distribution and channel counts when dual-wavelength or triple-wavelength sources are

utilized. Similarly, the nSMG is also defined for a single wavelength. Thus, when estimating the

total sampling rate of the probe using multi-wavelength sources, the control unit must cycle through

each group multiple times (once for each wavelength). Fourth, MOCA’s analysis is based on the

coordinates of the center of an optode’s active area and does not account for the actual size of the

optode package, the shape of the optode’s active area, or any master control unit needed to control

a series of modules. Despite being able to place optodes near the edge of modules in MOCA, de-

signers may face constraints in practice imposed by the fabrication process due to board materials,

sizes, and electrical routing needed to drive these optoelectronics. In general, module shapes with

large interior angles allow optodes to be placed closer to the module’s perimeter. Fifth, MOCA’s
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probe-level functions are but one method of interrogating parameters in a systematic way. These

functions vary parameters in discrete increments (fixed number of orientations, a set spacing range,

and user-defined translation amounts) and therefore only explore a subset of all potential probe

layouts. They do not determine an optimal probe configuration—they assist in improving existing

probes by adding design constraints (holding module-level parameters constant) and allowing a user

to identify design choices that improve performance for their particular application. Finally, MOCA

can output 2-D optode layouts but relies on other existing software, such as AtlasViewer [130], to

perform 3-D head contour registration. It does, however, automatically add spring relationships to

embed modular aspects into an exported probe. For example, the distance between all optodes (both

sources and detectors) within a module is fixed, while inter-module channels can vary slightly. This

ensures that a physically rigid electronic module does not transform when registered to a surface. In

addition, the performance metrics output by MOCA are currently based on a 2-D probe layout and

do not account for changes in SDS if the probe is “wrapped” on the 3-D surface of a head [123].

Consequently, 2-D-derived metrics may underestimate the number of channels when a probe is

made to conform to the scalp. This may result in an increase in the number of total inter-module

channels for a probe. However, by working in 2-D, MOCA can both help unearth design and per-

formance relationships, as well as drastically constrain the vast potential design space by helping

researchers converge on the module- and probe-level parameters that most impact performance.

In conclusion, the work in this chapter is an attempt to contribute to the adoption of NIR

imaging systems by providing a software platform to systematically investigate the large design

space of modularity. While the initial intent of using the modular architecture was to increase chan-

nel density in fNIRS probes, the emerging challenge of analyzing and comparing modular-based

systems quickly resulted in a project in itself. This tool facilitates the design, adoption, and scal-

ability of optical imaging systems by directly addressing the challenges of working with modular

system attributes. As for other attributes, MOCA addresses portability since modular fNIRS systems

are built out of lightweight modules that lend themselves to be easily transported. Additionally, by

providing a spatial multiplexing strategy that can efficiently sample channels that leverage sources

and detectors on neighboring modules, we have also provided the field with a method to increase

channel density while still maintaining fast acquisition times. Without addressing the challenges of

modular attributes using the capabilities that MOCA provides, we cannot expect the field to easily

scale optical imaging systems into future applications efficiently.



CHAPTER 5

Modular Optical Brain Imager (MOBI)

This chapter is the second part of the work addressing the second challenge described

in Chapter 1. While Chapter 4 focuses on describing the generalized software pipeline aimed at

evaluating, comparing, and optimizing complex modular fNIRS systems, this chapter details our

fiber-less, wearable, 3-D aware and modular MOBI system designed with guidance from MOCA.

Portability is addressed through a lightweight, battery-operated system that can automatically detect

how modules are connected to each other. By leveraging the connection topology and orientation

sensors on each module, the MOBI system can internally determine the location of all optodes in a

probe, drastically reducing setup times and making the systems easier to use in naturalistic settings.

Here, we take portability a step further by creating a system made from flexible-circuit-based mod-

ules that conform to the scalp, allowing for long-term wearability in natural settings. Additionally,

the high-density attribute is addressed through the implementation of a spatial multiplexing sam-

pling strategy and through the use of inter-module channels, which are source-detector pairs with

sources and detectors on neighboring modules.

5.1 Introduction

Neuroimaging techniques have advanced our fundamental understanding of human brain

function [19]. However, brain activations often exhibit complex patterns and dynamics that are only

apparent when measured in natural environments [20, 19]. Despite making tremendous progress,

contemporary neuroimaging techniques such as fMRI [95] and MEG are hindered from study-

ing these advanced dynamics due to their poor portability and immobility during use [21, 22].

Electroencephalogram (EEG), although highly portable, suffers from low spatial resolution com-

68
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pared to fMRI [153, 21]. These inherent disadvantages of the gold standard techniques restrict our

current understanding to limited types of stimuli and interactions within confined spaces [20]. In re-

cent years, researchers have turned to fNIRS to address this technological gap [60]. FNIRS is based

on the theory of neurovascular coupling [61]. It uses low-power light spectroscopy to measure brain

activation and its associated hemodynamics [60]. With its non-invasive nature, the use of fNIRS has

increased exponentially [109, 22] to include studies from psychiatric conditions [103, 104] and lan-

guage [101, 102, 154] to cognitive neurodevelopment [97, 98, 99, 100] and stroke recovery [105],

education [155], pain detection [156], and even brain-computer interfaces [106, 107, 108].

Many of these studies using fNIRS have utilized traditional, fiber-based, cart-sized in-

strumentation [62, 110, 111, 157]. Despite it being an improvement over conventional fMRI and

MEG modalities, fiber-based fNIRS systems also quickly reached a limit on portability and chan-

nel density due to the use of fragile fiber optic cables [158, 122] and stationary source/detector

units [112, 113]. The need to expand toward broader paradigms in unrestricted environments [19]

requires the use of portable and wearable systems [115, 20], and the need for wearable systems has

led to the increased use of modular architectures [119, 120, 121, 132, 23, 24, 25].

As detailed in Chapter 4, modular fNIRS systems are probes composed of repeating

source/detector circuits called modules. Repeating modules not only facilitate and lower fabri-

cation costs but also allow for re-configurability to varying sizes of regions of interest [114]. By

using only the minimal number of modules needed for a specific task, modular fNIRS systems dras-

tically improve portability [22]. Additionally, the use of varying SD separations by utilizing both

intra- and inter-module (sources and detectors on different modules) pairs provide overlapping chan-

nels, improving both spatial resolution and depth specificity (a key parameter in removing systemic

physiological signals) [116, 24]. Modern fNIRS systems now leverage a plethora of state-of-the-

art design and analysis tools that support the use of modular architecture in natural environments.

Optode layout optimizers [128, 130, 129, 127] and modular probe designers [30] ensure application-

specific arrangements, motion [124, 125] and coupling [126] artifact correction algorithms allow for

improvements in data quality, and faster light-propagation simulation tools [137, 136] facilitate the

use and analysis of high-density fNIRS probes.

Despite its increasing adoption, the modular high-density fNIRS architecture also pos-

sesses its own set of technical challenges [159, 21] and usability concerns [160, 161]. First, the

use of fNIRS in natural settings means subjects will be more mobile, leading to headgear moving

and shifting relative to the scalp during use [21, 162]. Current solutions to ensure proper cou-

pling use mechanical components that are cumbersome, require replacements, and add head-borne
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weight [163, 119]. Second, the ever-increasing number of optodes in a probe requires very efficient

encoding strategies to maintain sufficiently high frame rates to capture the hemodynamic response

function (HRF) [117, 157, 164]. Finally, in order to improve accuracy using high-density tomo-

graphic analysis, we must be able to know the location of all optodes in a probe prior to and during

the use of a system [165]. The most traditional approach is to use expensive hand-held 3-D digitiz-

ing systems to record the coordinates of optodes prior to the start of an experiment [159, 23]. More

recent solutions leveraging photogrammetry promise to be more portable, but still require a set of

external cameras that restrict mobility to areas within the camera’s field of view [24, 165].

To address these needs, we have designed a lightweight and re-configurable fNIRS Mod-

ular Optical Brain Imager (MOBI) system well-suited for full-head long-term brain monitoring or

over a particular ROI. This ultra-compact and fiber-less system addresses optode-to-scalp contact

coupling through its shape and board composition. A dual-triangle shape allows for better con-

forming to a surface, akin to how a triangular mesh accurately represents a 3-D shape, while its

flexible-circuit-based board allows the entire module to bend over arbitrary shapes to ensure con-

stant optode-to-scalp contact [163, 133]. Additionally, a dense peer-to-peer (P2P) network allows

the system to automatically determine the connection topology between modules of a probe without

user input. This facilitates the implementation of a spatial multiplexing encoding strategy to increase

a probe’s full frame rate. Finally, the wearable MOBI modules each contain 3-D orientation sensors

that leverage the connection topology and the module’s geometry to automatically determine the

location of all sources and detectors without the use of an external hand-held or photogrammetry

tracking system. This automatic, independent digitization method shortens setup times, ensures

high data quality, and improves accuracy and contrast through tomographic reconstructions.

In this chapter, we introduce our MOBI system. In Section 5.2, we describe our MOBI

system design, including details of individual modules as well as supporting components such as

the master and trigger boards. We also highlight novel features of our system, including connection

topology recognition, inertial measurement unit (IMU)-based optode positioning, and frame rate

improvement through spatial multiplexing. Section 5.3 focuses on the characterization of our MOBI

module and the validation of its features. We quantify conformability through the use of flexible-

circuit-based modules and detail the accuracy of our internal-based optode digitization method.

Additionally, we show results from two in-vivo experiments and compare MOBI’s performance to

that of a commercial fNIRS system. Finally, Section 5.4 describes the limitations and assumptions

used in our investigation and proposes work to address them in the future.
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(a)

(b)

(c)

Figure 5.1: (a) Top side of a Modular Optical Brain Imager (MOBI) module without a silicone
cover showing the four flexible printed circuit connectors and 5 hair-acccess holes. (b) Bottom side
of a MOBI module with light guides on optodes and black silicone cover of board. (c) Unpopulated
flexible-circuit board for a MOBI module.

5.2 Methods

5.2.1 Module design

Our MOBI system is based on double-sided modules manufactured on flexible-circuit-

based boards, allowing the modules to bend and conform to the scalp [Figure 5.1(c)]. Each module

houses two detectors (OPT101, Texas Instruments, USA) with built-in trans-impedance amplifiers.

The 3 dual-wavelength sources (SMT735D/850D, Marubeni, Japan) at 735 and 850 nm are driven

from a digital multiplexer (NX3L4051, NXP Semiconductors, Netherlands) with a programmable

constant current driver (LT3092, Analog Devices Inc., USA) using a spatial multiplexing encoding

strategy (Figure 5.2).

The optode layout results in one 8 mm, one 30 mm, and four 24.5 mm dual-wavelength

channels on a single module. A 3 mm diameter light guide (53-833, Edmund Optics, USA) is glued

to each optode to focus the emitted and detected light [Figure 5.1(b)]. A 9-axis IMU allows for abso-

lute orientation measurements for each module (BNO055, Bosch Sensortec, Germany). All optodes
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Figure 5.2: Schematic diagram of a single Modular Optical Brain Imager module. The microcon-
troller uses an internal inter-integrated circuit (I2C) protocol to communicate with components on a
single board. A peer-to-peer (P2P) network allows communication between neighboring modules.

and sensors on the MOBI module are controlled and read by an onboard system-on-a-chip (BC832,

Fanstel Corp, USA) with an integrated microcontroller (nRF52832, Nordic Semiconductor, Nor-

way). An internal inter-integrated circuit (I2C) communication protocol is used to set the current

driver and communicate with the onboard IMU (Figure 5.2). Additionally, three low-dropout volt-

age regulators regulate the power source voltage for the source, detector, and auxiliary measurement

components. The microcontroller samples all six dual-wavelength channels, dark measurements,

and IMU measurements at a frame rate of 22 Hz.

The five optodes are located on one side of the module—the side that remains in contact

with the scalp. All driving electronics are placed on the non-scalp side of the module to assist with

heat dissipation and comfort. Triangles are the most efficient shape for tessellating a 3-D surface,

thus, the use of a “dual-triangle” shape (two equilateral triangles with 50 mm sides) and a flexible-

circuit-based board allows for increased conformity and optode-scalp coupling. MOBI modules

have a channel density of 0.56 dual-wavelength channels per square centimeter. The modules are

completely encapsulated in flexible black silicone to provide comfort during long-term wear, block

stray light, and protect the electronic components during use. Each module has four flexible printed

circuit (FPC) connectors that allow multiple modules to be connected using FPC cables of fixed

lengths [Figure 5.1(a)]. A P2P serial network allows each module to communicate with up to four
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Figure 5.3: (a) Schematic diagram of a Modular Optical Brain Imager system. An external power
source and trigger board are optional. (b) The master module without its cover.

connected neighboring modules. Five 6 mm diameter holes next to each optode are used for hair

removal after placement on the scalp. Each module, including the components, light guides, and

silicone cover, weighs 14 grams.

5.2.2 System architecture

Our MOBI system consists of a computer, a single master module, and an arbitrary num-

ber of MOBI modules connected to each other using FPC cables (Figure 5.3). Optionally, a separate

power source and a trigger board can also be connected to the master module to allow synchroniza-

tion of events during experiments. The master module uses an I2C communication protocol for

power and data acquisition of each module (Figure 5.3(a)). The master module incorporates a USB-

based microcontroller development system (Teensy 4.0, PJRC, USA), a voltage regulator, an FPC

connector, a Japan Solderless Terminal (JST) connector, and two switches. A micro-USB cable

connects the master board to a computer for serial communication. The switches are used to man-

ually select the power source (from micro-USB or an external battery). A 2-pin JST connector

allows an external trigger board to be connected for synchronizing auxiliary signals such as exper-
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(a)

(b) (c)

Figure 5.4: (a) Five modules in a single chain configuration connected to a master module. (b) Mod-
ular Optical Brain Imager (MOBI) Graphical User Interface (GUI) displays 5 modules connected.
(c) MOBI GUI displays the relative position of each module based on differences in neighboring
orientation measurements.

imental triggers. The trigger board is based on a simple microcontroller (Atmega328p, Microchip,

USA) and interrupts fNIRS readings from inputted transistor-transistor logic (TTL) signals. The

entire trigger board is encased inside a 3-D printer cover. A GUI provides real-time detector and

IMU readings. The GUI also provides the ability to change the current source and detector gain of

individual optodes. All acquired MOBI data is saved in Shared Near Infrared Spectroscopy For-

mat (SNIRF) [166].

5.2.3 Automatic features

Here, we describe MOBI’s automatic features, including connection topology recognition,

IMU-based optode positioning, and spatial multiplexing encoding. These complex features are best

visualized in our MOBI demo video [167].
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5.2.3.1 Connection topology recognition

Our MOBI system has the ability to recognize the connection topology between all mod-

ules to determine the number of modules and the orientation of each module in an arbitrary probe.

Any two modules can be connected by simply bridging any FPC connections with an FPC cable

[Figure 5.4(a)]. Upon start-up, each module samples all four of its P2P communication channels

to determine if another module is connected to one or more of its FPC connectors. This sampling

of inputs/outputs allows the P2P serial network to automatically determine how each module is laid

out relative to others. With the P2P connections identified, the master board can determine the

orientation of each module in the probe by simply rotating and translating the module dimensions

based on the connection topology [Figure 5.4(b)].

5.2.3.2 IMU-based optode positioning

Additionally, our MOBI system can automatically determine the 3-D position of each

source and detector in the probe without the use of an external digitizer. With the connection topol-

ogy known, the master module can sample the orientation sensors between neighboring modules to

create a 3-D spline estimating the shape onto which the probe is placed [Figure 5.4(c)]. The master

module then superimposes FPC cable lengths, module geometry, and optode layout within a module

to derive the 3-D location of each optode, reducing the need for time-consuming 3-D position mea-

surements. The IMU measurements also permit robust temporal signal rejection through real-time

monitoring of optode movements during use.

5.2.3.3 Spatial multiplexing groupings

Finally, our MOBI modules utilize a spatial multiplexing encoding strategy in which

sources are grouped into SMG and turned on at the same time [30]. Based on the layout of all

the sources and detectors (automatically derived from the connection topology), the master module

assigns sources into SMGs to be on simultaneously without cross-talk based on the SNR of the

system. In this way, probe layouts that are more spread apart lead to a smaller number of SMGs

because the sources are more dispersed. The SMR is defined as the number of sources in a probe

divided by the number of SMGs. In this way, spatial multiplexing improves a system’s full frame

rate by a factor of SMR.
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5.2.4 In-vivo protocols

The MOBI system was validated against a commercial fiber-based fNIRS system (Brite23,

Artinis) through simultaneous measurements during a dual-pressure cuff occlusion experiment on

the arm. A single MOBI module and an Artinis probe with a single channel were placed on the

underside of the forearm for the cuff occlusion experiment. The upper arm rested at the same height

as the heart. Data from the 30 mm channels were simultaneously captured at 10 Hz in a completely

dark room. The 100 mmHg (venous) and 220 mmHg (arterial) occlusions lasted 75 seconds each.

Additionally, human brain activity was measured in an adult male in the left motor cortex

area during a finger-tapping task. The finger-tapping task consisted of a 10-second task period

followed by 20 seconds of rest, repeated 10 times with 60 seconds of baseline rest prior to and at

the end of the repeated tasks. Subjects were instructed to sit still with their eyes closed during the

entire experiment. During the task period, a verbal command instructed the subjects to tap their

right thumb sequentially against their index, middle, ring, and pinky finger, followed by the same

sequence mirrored, repeated as fast as possible until instructed to rest. During rest, subjects were

instructed to place both hands on their laps. Signals were obtained through a single MOBI module

placed over the left motor cortex.

Data from MOBI were converted to SNIRF format using MOCA. Data from Artinis was

first converted to the NIRS format using the Artinis software, OxySoft, prior to converting to SNIRF

format using HomER [124]. Optical density was converted to hemoglobin concentrations using

HomER after applying a 0.01 Hz high-pass and a 0.5 Hz low-pass filter to all channels.

5.3 Results

5.3.1 System characterization

A 20-module full-head MOBI probe results in 372 dual-wavelength channels due to the

use of source and detector pairs in between adjacent modules. This increases the achievable channel

density to 1.72 channels per square centimeter. Additionally, with MOBI’s spatial multiplexing

encoding strategy and a SD separation cutoff of 52 mm (where SNR is > 40 dB), this full-head

probe results in 14 spatial multiplexing groups and a full frame rate of 4.7 Hz. Each source is driven

at 100 mA. The total power draw of the full-head probe is 2.31 W, resulting in a 2.85-hour battery

life when a 3.7 V 2000 milliamp-hour (mAh) battery is used.
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Figure 5.5: Signal-to-noise (SNR) of MOBI modules as source-detector separation increases. Red
asterisks indicate SNR for the 735 nm while black diamonds are for the 850 nm wavelength. Orange
numbers signify the channel number. Channels 1, 2, and 3 are from sources and detectors on the
same module. The large source-detector separations of channels 4-8 are from sources and detectors
on different modules.

Table 5.1: The full frame rate of a probe depends on the layout of the modules within a probe. The
three layouts in Figure 5.6 result in the channels, groupings, and full frame rates below.

Layout 1 Layout 2 Layout 3
Number of Modules 5 5 5
Temporal Encoding Full Frame Rate [Hz] 4.4 4.4 4.4
Number of Channels 38 53 55
Number of Spatial Multiplexing Groups 6 7 8
Improvement Ratio (SMR) 2.5 2.14 1.875
Spatial Encoding Full Frame Rate [Hz] 11 9.4 8.25

Figure 5.5 shows the SNR as a function of SD separations. The SD separations were cal-

culated from intra- and inter-module channels using a 3-module probe placed on an optical phantom

(µ
′
s = 4.7 cm−1 and µa = 0.063 cm−1 at 830 nm). Each measurement is the average of 10 samples

of that channel. Figure 5.5 shows a linearly decreasing SNR as SD separation increases for both

wavelengths. The correlation coefficient, R2, is 0.955 and 0.959 for the 735 and 850 nm wave-

lengths, respectively. SNR for MOBI modules is greater than 50 dB for SD separations of up to

43 mm.
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Figure 5.6: Three example probe layouts all composed from five identical Modular Optical Brain
Imager modules. Optodes are represented by small red circles (sources) and blue crosses (detectors).
Each layout has multiple spatial multiplexing groups determined based on the global proximity of
sources to each other. Red dashed circles show which sources are simultaneously on for the first
spatial multiplexing group of each layout.

5.3.2 Spatial multiplexing improvement

The performance results from three different 5-module probe layouts (Figure 5.6) are

shown in Table 5.1. When using a temporal encoding strategy, the full frame rate of the probe is

determined by the number of sources in the probe since each source is sampled sequentially. Al-

though the temporal encoding full frame rate remains constant at 4.4 Hz, the channel density and

the number of spatial multiplexing groups increase from layout 1 to 3 as the layout of the probe

becomes denser (Row 3, Table 5.1). Consequently, SMR decreases as the probe layout increases in

density, limiting the potential full frame rate performance gain. Layout 1 saw the biggest improve-

ments in full frame rate when converting from a temporal to a spatial encoding strategy. The spatial

multiplexing full frame rate was always larger than the temporal encoding full frame rate for all

three layouts.

5.3.3 Optode-scalp coupling

A 5-module probe, in a configuration identical to layout 2 in Figure 5.6(b), was placed

on a 100 mm radius sphere. The flexible-circuit-based modules were connected using FPC cables

using the FPC connectors. The rigid boards were connected using FPC cables glued onto rigid

extrusions that represented where the FPC connectors would have been soldered. The component

layout between the flexible and rigid boards is identical. The 25 optodes were digitized using a
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Figure 5.7: (a) A rigid-based board showing three sources and two detectors. (b) Boxplot showing
the distance from optode locations to the center of the sphere using rigid modules. The red line
denotes the average distance of all 25 optodes. The dashed green line represents the expected
distance to the center given the 5 mm thickness of the modules. (c) A histogram of the distances
reveals that the rigid-based probe does not conform to the sphere, leading to optodes being farther
away from the surface, especially those optodes closer to the edge of the module. (d) A flexible-
circuit-based board showing three sources and two detectors with light guides. (e) Boxplot showing
the distance from the optodes to the center of the sphere of the flexible-circuit-based probe. (f) The
histogram of the flexible-circuit-based probe optode distances.
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hand-held Polhemus digitizer and the distance to the center of the sphere was calculated for each

optode in both probes (Figure 5.7). The digitization was conducted on both flexible-circuit-based

and rigid-based modules [Figs. 5.7(a) and 5.7(d)].

Figure 5.7(b) shows the average distance to the center of the sphere for all optodes of a

rigid-board-based probe to be 107.5 mm with a range of 10.5 mm. In contrast, the average distance

to the center decreases to 104.9 mm with flexible-circuit-based boards that allow the module to

conform to the spherical surface [Figure 5.7(e)]. Additionally, the range of distances decreases

when using flexible-circuit-based modules. Figure 5.7(c) reveals a skewed left histogram, indicating

that optodes near the edges of rigid modules remain farther from the scalp. Figure 5.7(f), however,

shows that by using flexible-circuit-based modules, the same optode layout within a module results

in optode distance closer to the scalp, indicating the ability of flexible-circuit-based modules to

conform to the surface.

5.3.4 Automatic optode positioning

Figure 5.8(b) shows the traditional hand-held-based optode locations against the resulting

optode locations using internal orientation sensors. For visibility, the optode locations are displayed

over a 100 mm radius sphere. The cyan circles are optode locations averaged across five repeti-

tions of hand-held digitizations. The standard deviation across those five hand-held digitizations

was 1.78 mm. Figure 5.8(c) shows the average digitization error over all optodes, defined as the

Euclidian distance between the orientation-sensor-based location and the hand-held-based location.

The average orientation-based error was 1.4 mm. Figure 5.8(d) shows the same digitization error

with optodes grouped by module. For all five modules, the average digitization error was less than

2 mm.

5.3.5 Cuff occlusion results

Figure 5.9 shows the resulting changes in hemoglobin concentrations during the dual-

pressure blood cuff occlusion experiment. During venous occlusion, both HbO and HbR increase

for both systems [Figs. 5.9(a) and 5.9(b)]. The arterial occlusion resulted in a negative correlation

between HbO and HbR, as demonstrated by the horizontal total hemoglobin (HbT) line. Addition-

ally, the MOBI module captured the hyperemic peak typically observed when occlusion is suddenly

released.
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Figure 5.8: (a) Flexible-circuit-based Modular Optical Brain Imager (MOBI) modules arranged in
probe layout 2 (from Figure 5.6) on top of a 100 mm radius sphere. (b) Spline model between 5
MOBI modules (green line) from which source (red crosses) and detector (blue crosses) positions
are derived. Automatic optode digitization overlaid on manual digitization results (cyan circles). (c)
Digitization error distribution averaged over all five modules in the probe. A green asterisk indicates
the average digitization error. (d) Digitization errors are grouped by module.
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Figure 5.9: Results from a dual-pressure blood occlusion experiment using (a) a single Modu-
lar Optical Brain Imager module and (b) a single Artinis channel placed on the forearm. Venous
(100 mmHg) and arterial (220 mmHg) occlusions lasted 75 seconds each prior to release. Oxy-
genated, deoxygenated, and total hemoglobin concentrations are shows in red, blue, and green lines,
respectively.

5.3.6 Finger-tapping results

Figure 5.10 shows the resulting HRF after block-averaging during a finger-tapping exper-

iment. The stimulus lasted 10 seconds with a 20-second break in between, repeated 10 times. A

clear hemodynamic response is shown with an increase in HbO of 60 µM approximately 10 seconds

after stimulus onset. All channels demonstrated the expected increase in HbO and decrease in HbR,

albeit channels over the motor cortex show a larger amplitude response.

5.4 Discussion

While many modular fNIRS systems have brought about advantages such as portabil-

ity, scalability, and modularity, to our knowledge this is the first 3-D aware and fully flexible-

circuit-based system. MOBI’s features are especially important for transitioning fNIRS from lab-

oratory/clinical settings to natural environments. With the expected higher physical movements in

these new settings, we must find new and simpler methods to ensure optode-to-scalp coupling during

use. Additionally, for true wearable commercial adoption, the fNIRS community needs to rely less

on expensive and cumbersome technology, such as 3-D tracking systems, for system setup. MOBI’s

automatic connection topology detection and IMU-based optode positioning do just that—they pro-

vide the necessary technical quantification for highly accurate 3-D modeling without the need for
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Figure 5.10: Block average results from a finger-tapping experiment with a Modular Optical Brain
Imager module placed over the left motor cortex centered on the “C3” landmark defined in the
standard 10-20 system. Solid lines are oxygenated and dashed lines are deoxygenated hemoglobin.
Magenta, cyan, and orange lines represent different channels within the probe.

lots of user input and knowledge, enabling not only a wearable system but a usable one too.

Additionally, the system’s usability is improved without affecting its performance. Fig-

ure 5.5 shows MOBI’s large dynamic range, an important consideration for modular, full-head sys-

tems with multiple channels of various SD separations. A high SNR is achieved for large SD

separation while keeping safety considerations in mind. For example, the holes designed into the

modules used for clearing hair also provide cooling. The double-sided board design places only op-

todes on the scalp-facing side, limiting all driving electronics to the non-contact side, allowing for

further heat dissipation for long-term wear. With a measured 9.8 mΩ resistance for each module, 75

modules can be theoretically connected prior to the 5 V supply power dropping below the necessary

3.3 V to drive the microcontrollers, far above the approximate 20 modules needed for a full head

probe. Excluding the master board and any fabric to further block light, a full-head 20-module probe

would weigh 280 grams (about the weight of an average bicycle helmet)—lightweight enough for

long-term wear.

Full-head modular probes not only require lightweight modules and large dynamic ranges

but also an encoding strategy to ensure fast full frame rates. Figure 5.6 shows how a spatial multi-

plexing encoding strategy can improve a full probe’s sampling rate by leveraging a probe’s layout

rather than the total number of sources. As long as sources are spatially dispersed based on their
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performance, contributions to a detector’s readings avoid cross-talk. As the probes become denser

and the number of channels increases (Table 5.1, Row 3), the distance between sources decreases,

and the number of SMGs must increase to prevent cross-talk. Similarly, as 2-D probes are placed on

3-D surfaces, the Euclidean distance between sources decreases, which may require further SMG

refinement. Although spatial multiplexing can be easily implemented and doesn’t require exten-

sive hardware, it does require knowledge of the location of all sources and detectors to identify the

SMGs for a particular probe—a functionality that many systems currently do not possess without

the use of external digitization tools.

In addition to increasing the full frame rate of a probe, modular fNIRS systems must

ensure proper source-to-scalp coupling during high-movement use in natural settings. Figure 5.7

compares a rigid board and a flexible-circuit-based board’s ability to conform to a surface. Rigid

modules have minimal direct contact with the scalp and rely on mechanical/protruding couplers on

the optodes or curved board designs tailored toward specific head shapes. Figure 5.7 highlights

the source-to-scalp gaps inherent in rigid-board designs. Therefore, designers of rigid boards must

balance between designing smaller boards to increase source-scalp coupling or designing larger

boards that allow for larger SD separations. Our flexible-circuit-based boards allow for both.

Finally, not only is source-to-scalp coupling important, but an fNIRS system must also

constantly measure the position of each optode during use. Figure 5.8 validates the accuracy of

our internal IMU-based optode positioning system. It demonstrates that the average error be-

tween MOBI’s IMU-based optode digitization and the traditional Polhemus-based digitization is

only 1.4 mm. The positioning error is less than the variability of repeated handheld-based digiti-

zation systems. This method requires knowledge of the probes connection topology, assumes fixed

FPC cable lengths, and requires knowledge of the module geometry and optode layout. Although

automatic optode digitization can drastically reduce the time it takes to set up fNIRS systems, it

does require appropriate hardware support such as a P2P network and orientation sensors on each

module. Although we have seen the use of orientation sensors in modular systems for motion arti-

fact correction, to our knowledge, this is the first use of IMUs for internal-based optode positioning

and decreasing system setup times.

Figure 5.9 shows the results of validating our MOBI system against a commercial fNIRS

system. As expected, both systems show an increase in both HbO and HbR during venous occlusion.

When the pressure increases above systolic pressure, we see a negative correlation between HbO and

HbR due to the muscles depleting blood oxygen during the occlusion of arterial blood. Finally, the

hyperemia peak seen at 180 seconds corresponds to the increase in blood flow that occurs following
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arterial occlusion. Not only do both systems capture the same physiological traces, but the traces

are consistent with previous research results [25]. Similarly, Figure 5.10 shows the results of a

finger-tapping experiment. As expected, the HRF shows an increase in HbO and a decrease in HbR

during a task that utilizes the motor cortex. Although we cannot say anything about our system’s

performance across a population due to it being a study of N=1, these experiments demonstrate

that MOBI’s ability to extract tissue hemodynamics and brain activity is comparable to existing

commercial systems.

Our MOBI system has limitations despite directly addressing many usability concerns of

wearable systems. First, spline models onto which optode layouts are superimposed rely on the

assumption that the distance between modules is fixed. In MOBI, we use 14 mm length non-

stretchable FPC cables that provide a 2 mm gap between modules once connected to the FPC

connector. As MOBI samples neighboring IMUs, it fixes the spline distance between modules.

Depending on the cap design, this assumption may not hold true for other fNIRS systems (for ex-

ample, if modules are placed on stretchable fabric). Second, while connecting modules using FPC

cables assists with determining the connection topology, it makes it difficult to remove a single

module from a dense probe to adjust hair under a particular region. Rather, our MOBI system uses

two caps—a sparse mesh cap that holds the probe in place while a user uses the holes to access and

adjust hair under optodes, and a second cap placed after hair adjustment to further block stray light.

Third, the finger-tapping results were conducted on a subject with short hair. Further investigations

into the effect of hair artifacts on signal quality must be performed. Finally, although MOBI data

can be saved in the standardized SNIRF format, our data acquisition Processing-based GUI requires

users to learn and work in a new interface. Future work includes integrating our work with the open-

source middleware Lab Streaming Layer [168] for easier synchronization and recording of fNIRS

and auxiliary data.

While many portable, modular, and high-density fNIRS systems have been recently pub-

lished, in this chapter, we further explored methods to improve on these architectural attributes.

The use of lightweight and low-power modules allows the system to be easily carried and pow-

ered through a portable battery. We also leverage flexible-circuit boards to allow for conforming to

the scalp, which improves optode-scalp coupling by providing comfort for long-term use, making

MOBI not just portable but wearable too. The modular-based architecture allows MOBI to be used

for full-head studies or over a particular region of interest. When used with MOCA, a user can com-

pare our MOBI system with other existing modular systems, a capability that was not previously

available to the community. Finally, we explored the high-density attribute in two ways. First, the
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use of IMUs along with an automatic connection topology allows for the location of all sources and

detectors to be known during use, allowing for 3-D tomographic reconstructions of brain activa-

tions using a high number of channels. Additionally, we support this increase in channel density by

introducing a spatial multiplexing encoding strategy to accelerate acquisition times.



CHAPTER 6

Optical Mammography Co-Imager

(OMCI)

OMCI is a wide-field diffuse optical tomography breast imaging system designed to be

used in conjunction with existing x-ray mammography systems or as a standalone system for DOT.

It is assembled on top of a mobile cart, allowing it to be wheeled throughout a clinic. Portability is

also addressed through the SLI subsystem, which can be removed and re-attached without the need

for re-calibration. In terms of modularity, it integrates four subsystems: a mechanical breast com-

pression stage to resemble clinical mammography, a frequency-domain subsystem for recovering

absolute tissue optical properties, a wide-field transmission-based diffuse optical subsystem, and a

high-resolution breast surface acquisition system. Although not all identical, each subsystem can

be toggled on/off, allowing for OMCI to use only the minimal number of subsystems required for

its application. A wide-field illumination and camera-based detection system allow for high-density

and high-resolution imaging of large breast tissue volumes, improving acquisition speeds compared

to fiber-based systems. This assembly method of building high-density and portable DOI systems

promotes scalability through the use of a generic USB communication interface that allows for the

simple expansion of future subsystems and/or the ability to upgrade specific subsystem components

without affecting the whole. Although OMCI is composed of four separate subsystems working

in tandem, in this chapter, we will briefly provide an overall instrument description but will focus

on the design and characterization of the dual-camera SLI breast shape acquisition system used for

improving diffuse optical tomography image reconstructions.

87
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6.1 Introduction

Breast cancer is the most commonly diagnosed cancer in women worldwide with an esti-

mated 1,918,030 new cases in 2022 in the United States alone [169]. Screening and diagnostics of

breast cancer are done through structural or functional breast imaging using multiple breast imaging

modalities. X-ray mammography and DBT are the primary breast cancer screening techniques [3]

used for early detection to reduce mortality rates [170]. Modalities such as magnetic resonance

imaging (MRI) and positron emission tomography (PET) are used less frequently than x-ray due

to their high cost and use of radioactive isotopes [3]. Despite its recommendation for screening,

not only does x-ray mammography expose patients to ionizing radiation but it also suffers from a

high false-positive diagnostic rate [170, 171]. The modality lacks both strong structural contrast be-

tween healthy and tumor tissue, and the ability to quantify tissue functions to assess benign versus

malignancy [172]. These limitations have led researchers to investigate using DOT techniques to

characterize the breast tumor’s physiology to lower false-positive diagnoses.

Unlike x-ray mammography, DOT is an imaging modality that uses non-ionizing NIR ra-

diation to yield three-dimensional (3-D) maps of the optical properties of illuminated tissue [16, 70,

173, 15]. Biological tissues’ primary absorbers in the spectral window from around 600 to 1000 nm

have relatively low absorption, allowing NIR light to penetrate through centimeters of tissues [51].

This allows the quantification of physiological properties such as hemoglobin concentration, blood

volume, and blood oxygen saturation [172, 16]. Malignant tumors generally demand a greater blood

supply than their surrounding tissues, leading to increased light absorption that can be delineated

using spectroscopy and imaging methods, making DOT particularly useful for breast cancer imag-

ing diagnosis [174, 175, 176, 177, 178]. Unfortunately, DOT images are known for low spatial

resolution largely caused by the high scattering properties of biological tissues [16].

The low spatial resolution of DOT [179] can be improved by a multi-modal approach with

x-ray mammography [180, 181, 71, 146]. The high scattering present in the breast tissue redirects

photons to traverse large overlapping probing volumes before their detection, greatly reducing the

locality of the measurements and resulting in blurry images. Mathematically, this is reflected as the

severe ill-posedness of the inverse problem. Parallel-plate compression of breast tissues has been

used in an x-ray mammography scan to minimize overlapping tissues and has also been explored for

a number of standalone [177, 182] and multi-modal DOT breast imaging systems [183, 146, 184].

Multi-modal imaging approaches have been developed by leveraging tissue structural priors ob-

tained from high-resolution imaging methods such as magnetic resonance imaging [185, 186] and
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ultrasound [187]. These approach leverage the advantages of multiple modalities—they leverage

high-quality structural images to constrain the DOT inverse problem for more accurate tissue phys-

iology reconstructions.

Additionally, the DOT reconstruction can also be improved by constraining the inverse

problem through more accurate surface representations of the breast. Obtaining breast surface in-

formation to aid quantitative analysis of imaging data has garnered interest from a number of ap-

plications, including DBT [188] and MRI scans [189, 190]. For multi-modal DOT systems, the

3-D shape of the breast can be estimated using the structural imaging modality such as DBT [191]

or MRI [192]. When a 3-D imaging modality is not available, two-dimensional (2-D) mammogra-

phy [71] has also been used to provide the shape information. In such case, a simple way to recover

a 3-D breast surface is to extrude the 2-D breast contour along the compression axis [193, 194],

or sweep the 2-D breast contour along the contour line extracted from an orthogonal view [195].

These methods either rely on assumptions about the 3-D location of certain features (e.g. mamilla

position) or assume a constant curvature of the breast along the sweeping direction. For more ac-

curate reconstructions of tissue optical properties, especially near the surface, measuring 3-D breast

surface accurately can be greatly beneficial.

Accurately acquiring breast 3-D surface shapes has gained clinical acceptance due in

large part to the plastic and reconstructive surgery communities [196, 197]. The two prominent

techniques for 3-D breast surface imaging are stereophotogrammetry and laser scanning [198].

Stereophotogrammetry works by overlaying multiple images of an object taken from different view

angles and triangulating the location of the object based on matching features in the multiple im-

ages [199, 200, 201]. In addition to requiring multiple cameras to increase accuracy [202], this

technique is also heavily influenced by lighting conditions since features need to be extracted from

multiple viewpoints [203]. Another limitation is the “ptosis error” seen during scanning of ptotic

or larger breasts [204]. This arises due to the small field of view of stereophotogrammetry sys-

tems, leading to inaccuracies in breast surface and volume estimations due to the portions of the

breast that are not illuminated. Laser scanning is a surface imaging technique in which rays from

a laser beam are reflected off an object and detected by a detector [205]. Although laser-based

acquisition systems can produce more accurate surfaces [206], these systems tend to be expen-

sive [207, 208] and require the need for very precise setups [209]. Recently, the use of patterned-

lasers and orientation-sensitive detectors has led to an increase in portable 3-D laser scanning de-

vices [210]. While low-cost laser-based depth sensors have been widely deployed in game consoles

such as Xbox or PlayStation, they are only designed to achieve relatively low spatial accuracy com-
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pared to dedicated 3-D scanners. Still, patterned-laser-based surface acquisition systems generally

require a minimum scanner-to-target distance of 35 cm [211, 212]. Additionally, their typical hous-

ing is too large to fit between mammography compression plates [212, 189]. Bulky instrumentation

and long minimum working distance requirements make stereophotogrammetry and laser scanning

techniques infeasible in the confined, low-light mammography setting.

Another widely used 3-D surface acquisition technique is SLI [213, 214]. SLI works by

illuminating an object with two-dimensional spatially varying patterns with a projector and captur-

ing images from the illuminated object using cameras [72]. The distortion of the specially designed

patterns provides information regarding the shape of the object. Calibration of the camera-projector

system is easily done by capturing images of a known planar pattern (e.g. a checkerboard). With

the ability to use off-the-shelf components, a simple setup with a single projector and camera, and a

robust and simple calibration method, SLI is positioned to provide accurate, fast, and cost-effective

breast surface scanning [213]. However, similar to most patterned-laser surface scanners, commer-

cially available SLI systems have long minimal working distance requirements and large assemblies

that cannot readily fit within the confined mammography compression plates [214, 188].

Our approach to lowering false-positive diagnoses is two-fold. We first aim to improve

DOT reconstruction through more accurate surface representations of the compressed breast. Sec-

ond, we aim to develop a standalone DOT breast imaging system that leverages structural infor-

mation through the registration of the DOT reconstruction with prior x-ray mammographies. Our

group has primarily focused on the latter through the development of both multi-modal DOT re-

construction algorithms [181] and multi-modal (DOT and DBT) instrumentation that can work in-

dependently [215, 216, 217] or in conjunction with existing mammography systems [136, 180].

The approach to build DOT systems that can work independently and integrate with existing mam-

mography systems is commercially intriguing since it can lower acquisition costs and maximize

previous investments made into clinical instrumentation. We will take this same approach in our

first aim—that is, the SLI surface acquisition system we build will also have the capability to func-

tion independently or be easily integrated into existing mammography systems.

In this chapter, we first describe the overall OMCI instrument and its subsystems. We then

describe the design of the SLI breast scanner and detail the methods for adaptive illumination for

subject-specific skin tones as well as approaches to reduce specular reflection from the compression

plates. Next, we compare several traditional surface acquisition methods that leverage mammog-

raphy images against our SLI-based breast surface acquisition system and quantify the impact of

improved breast surface acquisition on the recovery of breast lesions using a series of simulations.
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Figure 6.1: A photo of the OMCI system.

Finally, we demonstrate OMCI’s use on healthy volunteers.

6.2 Methods

6.2.1 OMCI instrument

OMCI is composed of a linear stage mounted on a vertical rotary stage. The breast is

compressed by a pair of acrylic plates, with one plate mounted at the stationary end of a linear stage

(MN10-0160-M02-31 BiSlide, Velmex, NY, USA). Under the bottom compression plate is a box

that encloses many of the optical components of OMCI. An acrylic mammography compression

plate is mounted on the moving gantry of the linear stage, allowing for a plate separation ranging
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from 300 mm (fully released) to 0 mm (fully closed). A linear encoder (ETI Systems, Carlsbad,

CA, USA) is connected between the pair of compression plates to measure their separation. The

entire breast compression assembly is mounted on a rotatory table (306045-1-s-M04-C376, Lintech,

Monrovia, CA, USA), controlled by a foot pedal to permit mammography-like lateral-oblique com-

pression. A motor driver interface (VXM-2, Velmex Inc., USA) allows both stages to be actuated

independently by their stepper motor (NEMA 34 PK296 Stepper Motor, Oriental Motor Corpora-

tion, MA, USA). Two limit switches (BiSlide Push Button, Velmex Inc., NY, USA) confine the

translation stage range. A reed switch (L06 Non-Contact Reed Switch, LinTech Motors, CA, USA)

is used for homing the rotary stage. Four load sensors (SEN-10245, SparkFun, CO, USA) hold up

the bottom compression plate and measure the pressure applied on the breast. This design specif-

ically enables registration of structural information from separately acquired mammography scans

with the DOT images using the methods detailed in our previous studies [181].

While the breast is in compression, it is illuminated with an frequency-domain (FD) and a

wide-field (WF) subsystem. Bulk tissue properties are determined using a FD subsystem [218] that

utilizes two laser modules (HL6750MG and HL8338MG, Thorlabs GmbH, Germany) coupled to bi-

furcated fiber bundle (BFY400LS02, Thorlabs GmbH, Germany). The frequency multiplexed light

is driven into the OMCI box where a dual-axis galvo motor (GVS002, Thorlabs GmbH, Germany)

redirects it onto different positions on the bottom of the compressed breast. A fixed detector on

the top compression plate directs the light to a frequency-domain detector (C5331-04, Hamamatsu,

Japan) for collection. The WF subsystem illuminates the breast from below using a continuous-

wave (CW) projector (P300 Neo, Aaxa Technologies, USA) while a EMCCD camera (Andor Luca

R, Oxford Instruments, U.K) located above the compression plate samples the dual-wavelength light

transmitted through the breast. Both the FD and WF subsystems are controlled through the OMCI

GUI written in MATLAB.

6.2.2 Dual-camera SLI breast surface scanning system

The SLI system is embedded between the compression plate to provide accurate mea-

surement of the breast surface [Figure 6.2(c)]. This low-profile SLI scanner has a dimension of

30×10×4.8 cm3 and is attached to the stationary compression plate, on the side facing the pa-

tient’s breast [Figure 6.3(a)]. It consists of a central projector (P2-B DLP Pico Projector, AAXA

Technologies, Irvine, CA, USA) and two USB cameras (C525, Logitech, Lausanne, Switzerland)

to reconstruct a 3-D surface of the compressed breast. The SLI scanner is designed to have a rela-
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Figure 6.2: (a) Top-view of the breast compression compartment – upper: structured-light imaging
system; bottom: horizontal cross-section (orange line) of the compressed breast with blue circles in-
dicating the placement of the checkerboard used for system calibration. Numbers 1-5 indicate the 5
board orientations repeated at each location for calibration. (b) Side-view of the breast compression
plates, showing the linear translation stage (blue bar on the right) and a linear encoder (in yellow),
and (c) 3-D rendering of the structured-light imaging system, an acrylic bottom plate, and an acrylic
compression plate (top).

tively short scanner-to-target distance, typically less than 15 cm, and a vertical profile of less than

3 cm to permit scanning breasts with a wide range of sizes. A laptop is used to control the data

acquisition, including illumination pattern generation, projection, camera image acquisition, and

translation stage control via an interface written in MATLAB (R2017b, Mathworks, Natick, MA,

USA).

Gray-code-based binary patterns [219] are sequentially illuminated onto the breast surface

and captured using both USB cameras. These patterns are characterized by their pattern order, P .

A pattern set of P = 3 results in 3 sequences which are a reflected binary of the previous (“01”,

“0110”, and “01100110”). Four bar patterns are created for each sequence (a horizontal black

and white bar pattern, a vertical black and white bar pattern, and the complimentary pattern of

each) [220]. The digits correspond to the white (“1”) and black (“0”) bars. In addition, a full-

bright (white) and full-dark (black) pattern are added to each pattern set. Thus, a pattern set of

P = 3 results in 4×P +2 illumination bar patterns. Complimentary Gray-code-based illumination

pattern sets are used due to their robustness to decoding errors [221]. The two USB cameras have

overlapping field-of-views and sequentially capture images of the breast during each illumination

pattern at an exposure time of 250 ms. Dual-camera simultaneous acquisition allows the SLI system
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(a) (b) (c)

Figure 6.3: (a) Front-view photo of the structured-light imaging system. Cameras and projectors
are embedded in an acrylic mount to prevent the need for re-calibration. (b) Horizontal bar patterns
reflecting off the top compression plate and onto the breast show curved illumination bar artifacts
when the scaling factor α is set to 1. In (c), we show the same illumination pattern with thickness-
informed masking eliminating the curved bar artifacts by cropping the patterns exceeding the breast
surface before projection. Additionally, the scaling factor is automatically calculated to prevent
camera saturation.

to capture the curved surface of breasts of varied sizes without moving components.

6.2.2.1 Special data acquisition considerations

Skin tone differences are known to affect light-based surface reconstruction accuracy,

especially in low-light settings. To account for skin tone variations, the normalized illumination

patterns are multiplied by a scaling factor α ranging from 0 to 1 to prevent camera saturation.

The scaling factor for a camera is calculated prior to data acquisition by first illuminating a full-

bright pattern with α = 1 onto the breast and capturing a single image using the camera. If the

maximum pixel value of the captured image is above a preset threshold, α is decreased and the

breast is re-illuminated with a full-bright pattern multiplied by the new α value. This procedure

is repeated until the maximum pixel value of the captured image is less than 95% of the camera’s

maximum allowable pixel value. This entire procedure takes an estimated 8 seconds to complete

and is repeated for each camera.

Additionally, specular reflections from the acrylic compression plates, shown in Fig-

ure 6.3(b), can produce vertically mirrored breast surfaces. To minimize such specular reflection,

we use dynamic pattern masking based on real-time separation readings provided by a linear en-

coder. By limiting the vertical span of the illumination patterns, the patterns are projected onto the

compressed breast surface without generating strong direct specular reflections from the top and

bottom compression plates, as shown in Figure 6.3(c).
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6.2.2.2 SLI system calibration and re-projection errors

A standard SLI camera-projector calibration is performed prior to image acquisition and

is described in detail in [221]. For each camera-projector pair, a checkerboard pattern is fully il-

luminated in multiple positions and the corner locations are estimated in the projector’s default

coordinate system using a robust pixel classification algorithm [222]. The camera and projector’s

intrinsic parameters (optical center and focal lengths) are estimated using a calibration method de-

scribed in [223] by fixing a world coordinate system to the calibration checkerboard plane.

The projector’s extrinsic parameters (rotation and translation from camera to projector)

are calculated using a simple stereo camera calibration [224] that treats the projector as a secondary

camera. This results in a rotation matrix and a translation vector relating the camera’s coordinates

to the projector’s coordinates. Once the 3-D coordinates of all the corners of the checkerboard are

computed using the camera’s (and projector’s) intrinsic and extrinsic parameters, the corners are

“reprojected” onto all the images for which they appear. The re-projection error is defined as the

average distance between the re-projected corner locations and the actual corner location.

6.2.2.3 SLI system acquisition

The same acquisition procedures are used for both calibrating the system and acquiring

breast shape measurements (Figure 6.4). A single acquisition refers to the image capture of all il-

lumination patterns by both cameras. Camera-projector calibration requires an acquisition at each

checkerboard position. During breast measurements, the acquisition is preceded by the determina-

tion of the saturation scaling factor α and masking of the patterns. Patterns during calibration are

not masked since the calibration is done with the system fully uncompressed.

6.2.3 Alternative breast surface reconstruction methods for assessing SLI surface
accuracy

To evaluate the accuracy of the SLI system, we compare its output against alternative

surface acquisition methods. Each method estimates the surface of a 3-D breast derived from a

DBT scan.
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Figure 6.4: Flow chart of image acquisition for both subject measurements and system calibration.
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to projecting patterns. System calibration measurements do not mask the illumination patterns
and project at full intensity. The calibration loop (dashed lines) is repeated for each location and
orientation of the calibration checkerboard.
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Figure 6.5: Generation of breast surface meshes using multiple acquisition methods. The digital
breast tomosynthesis (DBT) volumetric mesh is created from segmented scans. The extrusion sur-
face mesh is created by extruding the top contour to the breast thickness. The top and side contours
of the DBT mesh are swept to create top and side surface meshes. The structured-light imaging
mesh is created by scanning a 3-D printed breast phantom and trimming the resulting point cloud
using the linear encoder measurements. The surface estimation error is calculated for each of the
surface meshes by comparing the surface estimations to the DBT mesh. All surface meshes are
converted to volumetric meshes for validating the effect of surface estimation methods on inclusion
reconstruction.
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6.2.3.1 Reference breast phantom fabrication

Figure 6.5 shows the process of creating surface meshes from DBT scans. Scans were

obtained from radiology data from The Cancer Genome Atlas (TCGA) breast Invasive Carcinoma

collection [225], available freely through The Cancer Imaging Archive [226]. The scan (ID: TCGA-

AO-A03M) was chosen due to its large size and complex surface structure, allowing us to highlight

the limitations of low field-of-view acquisition methods as well as traditional shape estimation meth-

ods that simply sweep a single breast contour. Digital Imaging and Communications in Medicine

(DICOM) slices were segmented into breast and non-breast regions using ITK-SNAP [227]. Seg-

mented slices were converted to a volumetric image and then into a 3-D mesh using a MATLAB

toolbox Iso2Mesh [136] [Figure 6.6(a)].

6.2.3.2 Single and double contour sweep-based surfaces

Three alternative surface estimation methods are employed in addition to the SLI surface

acquisition method. These three methods use spline models of the DBT breast contours from two

different planes (Figure 6.2). The extrusion method creates a surface mesh by extruding the x/y

breast contour in the z direction to the thickness of the DBT breast measured by the linear encoder

[Figure 6.6(b)]. The second and third methods utilize a curve-based sweep, in which a profile

(shape) follows a path (contour) to create a 3-D model. In the “top-sweep” method, the x/y breast

contour profile is swept along the y/z breast contour path [Figure 6.6(c)]. Similarly, the “side-

sweep” method uses the y/z breast contour as the profile and the x/y breast contour as the path

[Figure 6.6(d)]. In both sweep methods, the profile normal is kept constant.

6.2.3.3 Structured-light imaging surface mesh generation

The SLI system estimates the surface of the compressed breast from the captured images

while the breast is illuminated with Gray-code sequence patterns. Each camera-projector pair’s

extrinsic parameters are used to generate a point cloud in each camera’s reference frame using

Scan3d-Capture [73] [Figure 6.6(e)]. The alignment of each camera-projector pair point cloud is

done by a rigid transformation of each point cloud to the projector’s coordinates. The point clouds

are then down-sampled using a box grid filter and merged to a single point with normal properties

averaged [228]. Denoising is then performed to remove outliers [229]. The point cloud is trimmed

in the z direction to the height of the DBT breast measured by the linear encoder [Figure 6.6(f)].

The trimmed point cloud is first converted to a mesh using a crust algorithm [230] prior to being
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Figure 6.6: (a) Surface mesh of a digital breast tomosynthesis (DBT) model. Blue cyan lines show
the x/y and y/z breast contours from the top and side views. (b) Estimate of the DBT surface using
the extrusion method in which the contour (cyan) is extruded to the thickness of the breast along the
z axis. (c) The top-sweep method uses the x/y contour as the profile (cyan) and the y/z contour as
the path to sweep (red). (d) The side-sweep method uses the y/z contour as the profile (cyan) and
the x/y contour as the path to sweep (red). (e) point clouds from both camera-projector pairs were
generated by scanning a 3-D printed model of the DBT breast using the structured-light imaging
system. The green (Camera 1) and magenta (Camera 2) point clouds are in the respective camera
coordinates. (f) Merged and denoised point cloud in the projector’s coordinates.
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cropped by a bounding-box mesh with height matching the breast thickness to form a closed surface

mesh.

6.2.3.4 Surface estimation error

The surface estimation error, Es, of each surface estimation method is computed by com-

paring the nodes in each surface mesh to the nodes in the DBT mesh. The residual for each node

in the surface mesh is the shortest distance from that node to the DBT mesh. The SLI output mesh

is linearly translated (rotation and translation only) into the projector’s frame using the projector’s

extrinsic parameters prior to determining residuals. Es is defined as the average residual of all nodes

for a particular surface estimation method.

6.2.4 Evaluation of the impact of surface errors on DOT image reconstructions

Simulations were conducted to evaluate the impact of surface estimation accuracy on

DOT reconstruction accuracy for inclusions of various depths. Breast surface meshes were con-

verted to volumetric meshes with optical inclusions and the mean squared error of wide-field DOT

reconstructions was calculated for each estimation method.

6.2.4.1 Assessment of reconstruction accuracy

The effect of different surface estimations on lesion reconstruction was quantified using

simulations of CW pattern-illumination sources. A 5 mm radius spherical inclusion was added at

the mid-plane of each volumetric mesh at distances of 5 to 45 mm away from the nipple. The x and

z coordinates of the inclusion were fixed at 68 and 22 mm, respectively. The forward simulation

was conducted on a ground truth volumetric mesh consisting of the DBT volumetric mesh and a

spherical inclusion. The non-linear image reconstruction of tissue properties was calculated using

an iterative Gauss-Newton method in which a series of corrective terms were added to an initial

guess. The reconstruction resulted in distributions, µai, representing the resulting 3-D absorption

coefficient (µa) maps at the ith node for each simulated tumor location and surface model.

6.2.4.2 Reconstruction error assessment

We use mean squared error (MSE) to determine the accuracy of the image reconstruction

resulting from each breast mesh. To compute the MSE, we first interpolate the reconstructed ab-

sorption map, µa, to the DBT mesh, and then subtract the interpolated µa at each node i, with the
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corresponding ground truth absorption value defined on the same node, expressed as

MSE =
1

N

N∑
i=1

(µai − µa0i)
2, (6.1)

where N is the total node number; µai and µa0i define the recovered and ground truth µa values,

respectively, at the ith node in the DBT mesh.

6.3 Results

Results from the characterization of the SLI subsystem are broken down into three parts.

We will first report the projector and camera re-projection errors of our SLI calibration using the

calibration checkerboard. We then quantify the error of surface estimation methods in estimating the

surface shape of the DBT breast. Finally, we show the effect of different surface estimation meth-

ods on optical property reconstruction using simulations of continuous wave pattern-illumination

sources.

6.3.1 Camera-projector calibration and surface acquisition

Our dual-camera SLI system was calibrated in a dark room using a checkerboard with 5×7

internal corners with 1×1 cm2 black and white squares. The calibration checkerboard was printed

and adhered to a black Delrin surface to ensure it remained planar. To account for varying breast

shapes and curvatures, the checkerboard was placed at 7 locations. At each location, camera images

were captured for 5 board orientations: 1) normal to the y-axis [see Figure 6.2(a)], 2) rotated left

and 3) rotated right by 30 degrees relative to the x-axis, and 4) tilted forward and 5) tilted backward

by 30 degrees in the y/z plane [Figure 6.2(b)]. This results in a total of 7 × 5 = 35 checkerboard

positions within the camera and projector field-of-views (Figure 6.2). Each rotation and tilt was

measured manually using a printed protractor. The projector’s resolution is 1280×720 pixels and

the resolution of the cameras is 1600×896 pixels. Using a Gray-code of bit-length P = 9, we

acquire P × 4 + 2 = 38 images (see Section 6.2.2) at each board orientation/position placement.

An exposure time of 0.25 seconds per image per camera results in a total one-time calibration time

of 38× 7× 5× 2× 0.25 = 665 seconds. The first camera-projector pair (Camera 1 with projector)

resulted in a camera and projector re-projection error of 0.4089 and 0.2282 pixels, respectively.

The second camera-projector pair resulted in a camera re-projection error of 0.4368 pixels and a

projector re-projection error of 0.2889 pixels.
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Table 6.1: Mean and standard deviation of the residuals of each point in a surface estimation mesh
compared to the original digital breast tomosynthesis breast mesh.

Extrusion Top-Sweep Side-Sweep SLI

Surface estimation error, Es [mm] 6.8353 0.3772 0.4726 0.2543
Standard deviation [mm] 2.8671 0.3029 0.3370 0.2723

A re-calibration is only necessary when the relative position of the cameras and projec-

tor is changed. Once calibrated, the SLI system can acquire a surface scan in about 35 seconds,

including 16 seconds for adaptively adjusting the intensity scaling factor α for both cameras (see

Section 6.2.2.1 for details) and 19 seconds for image acquisition (38× 2× 0.25 = 19 s).

6.3.2 Surface estimation errors

The DBT breast model was 3-D printed (Ender 5, Creality, China) with a 0.1 mm layer

height using white PLA filament. The 3-D printed DBT breast was placed in between the com-

pression plates, compressed to the thickness of the printed DBT phantom, and scanned using the

dual-camera SLI system. The saturation scaling factors α were automatically determined using

twenty iterations, resulting in a α = 0.8 for both cameras. The two point clouds from each camera-

projector pair were transformed to the projector’s coordinates, down-sampled, and merged prior to

being denoised with the number of nearest neighbor points set to four and the outlier threshold set

to one standard deviation from the mean of the average distance to those four neighboring points.

The resulting point cloud from the SLI system scan has 35,256 points.

Table 6.1 shows the mean and standard deviation of the residual of all the nodes in the

estimated breast surface mesh. The z-extrusion method (EXT) results in the largest error (Es) of

all compared methods. While the top-sweep, side-sweep, and SLI methods all had similar standard

deviations, the SLI method resulted in the smallest Es.

6.3.3 Mean square error of optical property reconstruction

DOT reconstructions were performed using our in-house data analysis toolbox, Redbird-

m [54]. An L-curve analysis [231] is used to determine the regularization parameter as 3.16×10−10,

which is fixed over 10 Gauss-Newton iterations. The absorption coefficient of the spherical inclu-

sion was set to be twice (µa = 0.016/mm) that of the background tissue (µa = 0.008/mm). The

reduced scattering coefficient µ′
s was set to 1 mm−1 for both breast and inclusion tissues. A set

of 32 (16 vertical, 16 horizontal) moving-bar source patterns [27] covering an area of 40×40 mm2
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Figure 6.7: A comparison between the mean squared error (MSE) of the reconstructed absorption
map using 4 estimated surfaces (EXT - z-axis extrusion, TOP - sweeping x/y contour along y/z
contour, SIDE – sweeping y/z contour along x/y contour, and SLI – surface acquired from our
structured-light imaging system) as well as the ground truth digital breast tomosynthesis surface. A
1 cm diameter spherical inclusion is moved away from the breast surface at various depths between
5 and 45 mm in 1 mm increments. Image slices (in x/y plane) of the reconstructed absorption
coefficient (µa in mm−1) (top-row) and the ground truth µa (bottom-right) are shown as insets.
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was centered at the spherical inclusion. Iso2Mesh [136] was used to interpolate nodal values from

the reconstructed mesh to the ground truth mesh based on linear interpolation in order for all recon-

structed meshes to have the same number of nodes.

The MSE errors from these reconstructed images are summarized in Figure 6.7, showing

the effect of different surface estimation methods on the accuracy of optical property recovery.

Overall, surface mesh accuracy appears to have a notable impact on relatively shallow tumors, with

a depth of less than 25 mm. MSE values obtained using the SLI method closely follow those using

the ground truth DBT mesh for most inclusion depths. The top- and side-sweep-based meshes

followed similar trends, however, reporting higher errors compared to SLI especially when the

tumor is relatively shallow. The maximum MSE value for the SLI mesh at a distance of 5 mm

from the surface (4.89 × 10−7 mm2) was 23% higher than the maximum MSE value for the DBT

mesh (4.35 × 10−7 mm2). In contrast, the single-axis-extrusion method MSE was nearly twice

higher (8.62 × 10−7 mm2) than that from the DBT mesh. Although the DBT and SLI mesh MSEs

plateau to their minimum around 15 mm from the surface, top-, side-, and extrusion-based mesh

MSEs continue to decrease until a depth of 25 mm. Beyond the depth of 25 mm, the errors between

different methods become minimal.

6.3.4 Full system in-vivo patient results

Figure 6.8 shows the results from an OMCI full system acquisition on a healthy subject.

The images were provided by Edward Xu, who acquired the data from an Institutional Review Board

(IRB) approved study at Massachusetts General Hospital (MGH) in Danvers, MA. Figure 6.8(a)

shows the breast mesh generated using the SLI subsystem. In particular, the SLI subsystem was

able to capture the patient’s nipple as well as the amount of breast surface in contact with the top

and bottom compression plates. In Figure 6.8(b), we overlay the SLI breast mesh nodes onto the

acquired image from the Andor camera positioned above the top compression plate. A black cloth

was placed around the breast to mask any illumination from the CW system that was outside the

breast profile. Notably, the breast nodes follow the contour of the breast. Finally, in Figure 6.8(c),

we show the results of HbT concentration of a healthy volunteer breast. The bulk optical properties

were obtained using the radio frequency (RF) subsystem while the CW pattern-based reconstruction

was constrained by the SLI mesh.
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Figure 6.8: (a) Resulting breast mesh from using the structured-light imaging (SLI) subsystem on
a healthy subject. (b) The SLI mesh overlaid on the acquired Andor camera image. Red dots
correspond to nodes in the SLI mesh. (c) Total hemoglobin concentration results when all four
subsystems work in tandem. Results courtesy of Edward Xu.
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6.4 Discussion

The camera and projector re-projection errors in Section 6.3.1 represent an average error

of fewer than 0.5 pixels in estimating the corner locations of a calibration checkerboard placed be-

tween 50 and 250 mm away [Figure 6.2(b)] from the projector for all 35 checkerboard positions.

Although the same illumination patterns and calibration checkerboard positions were used to cali-

brate each camera-projector pair, we find a slightly better calibration accuracy when the projector is

paired with Camera 1 since Camera 1 is closer to the projector’s lens (Figure 6.2). The discrepancy

in the re-projection errors of the two pairs is due in part to the asymmetry of the dual-camera setup.

The asymmetry arises from the projector offset relative to its housing, making one camera closer to

the projector than the other [Figure 6.2(a)].

From Table 6.1, the single-axis extrusion method resulted in the highest surface error be-

cause it does not account for the curvature of the breast in the y/z plane [Figure 6.6(b)]. Table 6.1

indicates that, on average, points in the extrusion-method-derived surface estimation mesh are ap-

proximately 6.84 mm away from the DBT mesh. The top- and side-sweep methods decrease the

surface estimation error by incorporating a second breast contour from the y/z plane [Figures 6.6(c)

and 6.6(d)]. Both methods improve the accuracy of surface estimations by approximating the 3-D

curvature of the breast. We want to point out that both top-sweep and side-sweep methods require

an additional camera to obtain two orthogonal views of the breast [232], which does not necessarily

lead to simplified hardware compared to the SLI setup considering the mounting space constraints

and lighting conditions [188]. While also requiring two cameras, our mammography-tailored SLI

system can produce sub-millimeter resolution of the surface compared to the reference DBT breast

model based on Table 6.1.

Our results also demonstrated that the improvement in surface estimation accuracy can

lead to improved DOT reconstruction accuracy. Figure 6.7 shows using breast surfaces derived from

SLI can accurately recover the absorption profile compared to those recovered using the ground-

truth (DBT) mesh at most tested tumor depths. For superficial/shallow (< 10 mm) tumors, the top-

and side-sweep surface estimation methods followed similar trends to each other, reporting MSEs

about 50% higher compared to those from using ground-truth (DBT) surface models, and about

30% higher than those from using SLI surfaces. As expected, the effect of the surface accuracy

decreases as the inclusion is moving further away (> 25 mm) from the skin.

Despite the ability to produce sub-millimeter resolution of breast surfaces in poorly lit

and confined mammography-like settings, both our SLI system and our analysis have limitations.
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Firstly, the span of the output point cloud from our SLI system is limited to the area of the breast

that is well-illuminated by the projector. As a result, tissue boundaries near the chest wall or those

in direct contact with the compression plate may not be well covered due to the limited angles of the

projector/camera line-of-sight. Still, for DOT of a compressed breast, capturing a significant portion

of the front-facing breast tissue as our system does, provides quantitative differences in reconstruc-

tions, as shown above. Future improvement of this system should consider using more compact,

wide-angle projectors, higher resolution cameras, and patterns with higher order binary codes to

both expand the field-of-view and increase the point cloud resolution. Secondly, a 3-D printed

breast model was used to experimentally compare different shape acquisition methods. Different

choices of extruder sizes, filament colors, and printing techniques could impact the surface texture

of the printed phantom and slightly alter the surface estimation errors. Finally, the quantification of

reconstruction errors was based on simulations using a single set of pre-determined breast models,

tumor size and shape, tumor contrast, and wide-field pattern size. An experimental validation using

heterogeneous phantoms may produce more realistic comparisons.

OMCI is a very complex DOI system, on par with state-of-the-art commercially available

mammography systems. The challenge is to make these sophisticated systems scalable through

creative explorations of portability, modularity, and high-optode-density architectural attributes. A

few aspects made our standalone DOI system portable. Not only was the system assembled on a

movable chassis with wheels, but its dimensions were also chosen to fit within doors to allow for

the system to be mobile within clinics. Additionally, the SLI subsystem was designed to be easily

dismounted and re-mounted without the need to re-calibrate. Each of the four subsystems connects

to a single laptop through a USB bus, allowing researchers to easily add new subsystems in the

future. Not only can individual systems be upgraded or swapped out as needed, but the OMCI

GUI can selectively toggle subsystems on/off to decrease acquisition times when not all subsystems

are needed. Additionally, the design of each subsystem allows OMCI to be used as a platform

for investigating reconstruction algorithms through simple adjustments such as varying the SLI or

CW illumination patterns, varying the RF source locations using the galvos, or easily changing the

wavelengths used for bulk-property estimation. Finally, the high-density architecture attribute was

explored through wide-field trans-illumination and camera-based imaging. Rather than individual

sources and detectors, OMCI can probe large areas more efficiently, decreasing the time the patient’s

breast is in compression. At the same time, the accuracy of these high-density measurements is

improved through the use of the SLI subsystem to constrain the reconstruction with high-resolution

breast shape meshes.



CHAPTER 7

3-D printable optical phantoms

Scalability of DOI systems is attained not merely by technological advances that address

architectural attributes, but through facilitating the validation of new DOI systems. While the sys-

tems in Chapters 3, 5, and 6 provide strong evidence of the benefits of improving portability, mod-

ularity, and high-optode-density in complex DOI and NIRS systems, Chapter 4 and this chapter fo-

cus on providing the community with frameworks to facilitate the exploration of these architectural

attributes in the long term. In this chapter, we present the initial progress towards developing a stan-

dardized method to create geometrically complex phantoms to validate the expected performance

of new DOI systems. Through filament characterization processes and creative slicing methods, we

are taking the first step in standardizing and automating the manually-intense process of fabricating

optical phantoms.

7.1 Introduction

In order to evaluate the performance of the NIR diffuse optical imaging and spectroscopy

systems we have built, we need to use phantoms. Phantoms are physical samples carefully made

to mimic the optical properties of human tissues [37]. By imaging these objects of known optical

properties, we can evaluate the accuracy of a new system by comparing its result against existing

systems. Creating these phantoms is complex: not only do you need to create recipes that lead to

desired optical properties, but phantoms must also be manufactured in specific geometries tailored

to what the DOI system will measure. To address the optical properties, phantom makers tend to

focus on mimicking the absorption coefficient (µa) and the reduced scattering coefficient (µ
′
s) of

biological tissue [39] by using mixtures of scattering agents and absorbing pigments with a clear

108
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base [40, 41]. The shape of the phantom is typically created using traditional fabrication techniques,

either mold casting [42] or spin coating [44].

Traditionally, as DOI was in its infancy, these methods sufficed for simple phantoms.

However, these methods fall short of supporting complex geometries. As new DOI systems are

developed to image the brain [233, 234] and the breast, we will need to evaluate their performance

with phantoms that have complex structural and physiological properties. While some phantom

makers use intricate methods and procedures to develop geometrically complex phantoms [43],

these phantoms take days to manufacture, require lots of equipment and expertise, and the manual

process leads to geometry and optical property variations due to human variability. Thus, to sup-

port the system development, calibration, and testing of new imaging methods [235, 236] (like the

DOI systems developed in this dissertation), we need a new method to manufacture phantoms with

spatially varying optical properties and anatomically accurate geometries.

Rather than add structure-generating methods to traditional phantom making, we propose

a method to add customizable optical properties to a digital fabrication method that is already engi-

neered to produce arbitrary geometry—fused-deposition modeling (FDM). FDM is a form of 3-D

printing that creates a 3-D object by adding solid material layer-by-layer [41]. While traditional 3-D

printing uses a single filament material to generate a 3-D object, we proposed the mixing of grey

(absorbing), white (scattering), and transparent (base) filament colors to produce the desired optical

properties.

3-D printing for phantom development allows for customizable properties using raw print-

ing materials and the creation of spatially varying optical properties within a 3-D printed phantom.

This allows the creation of a wide range of phantoms with precisely known optical properties, ge-

ometries, and inclusions of various resolutions (size, shape, depth). Most significantly, the design of

a 3-D printed standardized calibration phantom for DOT minimizes geometry and optical property

variations due to human variability. In this way, researchers can manufacture identical phantoms

using in-situ materials with resolutions limited only by their 3-D printer, effectively allowing inde-

pendent DOT systems to be characterized by the same exact phantom.

In this chapter, we will detail our method to develop 3-D printed phantoms. We will first

describe a workflow to characterize new filaments to account for variations in lots of the same color

filament. We then show details of a slicer with the ability to slice an assembly of multiple standard

tessellation language (STL) files. The slicer is able to assign filament ratios (tissue types) to each

individual STL, allowing the printer to adjust the mixing ratio of the extruder as it prints embedded

inclusions into the large geometric print. Finally, in order to encourage the use of our method, we
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will disclose a list of lessons learned to help others attempt to replicate our phantoms.

7.2 3-D Printing Hardware

This project utilizes an experimental FDM multi-material 3-D printer (QuadFusion, M3D).

This marlin-based printer has an extrusion bar-based frame and uses stepper motors to control mo-

tion. The extrusion head is composed of small stepper motors to guide four filaments through a

metal nozzle with a polytetrafluoroethylene (PTFE) insert. The PTFE insert is a cylindrical piece

with 4 milled holes that extend from end to end. Mixing occurs in the nozzle tip. Due to the need

to mix filaments into one nozzle exit, we used polyethylene terephthalate glycol (PETG) instead

of the standard PLA filament. PLA is the most popular thermoplastic for 3-D printing because of

its cost, ease of print (it is semi-flexible and very forgiving), and it does not off-gas any fumes.

However, PLA is difficult to mix with other materials due to its limited temperature range. At high

temperatures (above 200° Celsius), PLA releases water which causes a high-pressure build-up in

nozzles. To resist the higher temperate and water, PETG is used. PETG is more viscous at higher

temperatures, allowing it to easily fuse with other PETG filaments.

7.3 Filament Characterization

The filament profiles are the derived settings used for a particular filament spool. Al-

though the majority of printing settings are consistent across PETG filaments, certain features must

be accounted for, particularly, the extrusion multiplier (EM) and retraction amount. EM is a setting

used to account for variability in extrusion amounts. An EM of 1 means that 1 mm of filament is

extruded for every 1 mm requested. Due to the filament path (the Bowden tube, motor teeth, varying

temperatures), certain filaments in certain printers may require over- or under-extrusion to extrude

the correct amount of filament. The retraction amount is the amount of filament to pull back up

into the nozzle as the print head moves in between printing paths. When this value is too low, you

will see “stringing” in prints from the oozing of material while the head is in motion. Too much

retraction and the printer will not print the first few millimeters upon restarting since the nozzle is

empty of filament.

To account for variations in filaments of the same color by the same manufacturer, we have

developed a method to characterize filaments and create filament profiles for each spool of filament.

In fairness, the variability in the extrusion multiplier is not entirely due to the manufacturer. The
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Figure 7.1: (a) Flowchart showing how to use measured path widths to adjust extrusion multiplier
values when characterizing filaments. (b) Printed square wall using clear filament. (c) Caliper
measurements show over-extrusion.

QuadFusion head is a complex head that requires filaments to be driven through curved paths and

high pressure that result in friction. We calculate filament-specific EMs for each spool used in our

printer by printing a square wall with the thickness of a single path width (PW). We then calculate

the new EM based on the desired path width and the actual path width of the print using the formula

EMnew = EMprinted × (PWdesired/PWmeasured). The steps are outlined in Figure 7.1(a).

A 3-D printed tissue type is simply a mixing ratio of multiple characterized filament

profiles. While one filament profile informs of the settings for printing a single filament, we

have to create combined printing settings when mixing multiple filaments (tissue types). This is

done as a weighted average of the settings scaled by the mixing ratios. For example, if white,

grey, black, and clear filaments each have extrusion multipliers of 1, 0.98, 1, and 0.9, respec-

tively, and we want to mix them in a 30/20/0/50 ratio, then the final extrusion multiplier would
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Figure 7.2: The “caging” purge method (a) An example penguin composed of three different tissue
types. (b) The same penguin model with the cage shown. The colors of the cage indicate the colors
on that segment of the print. (c) Resulting 3-D printed penguin.

be (1× 30 + 0.98× 20 + 1× 0 + 0.9× 50)/(30 + 20 + 0+ 50) = 0.946. Similarly, the extrusion

motors are driven at scaled rates based on the filament mixing ratio.

7.4 Multi-filament Slicing Artifacts for Purging Nozzle During Tissue

Transitions

One difficulty in fused multi-material 3-D printing not found in single filament printing is

the need to purge the nozzle in between changing mixing ratios for different tissue types on the same

layer. For example, if we want two separate mixing ratios for concentric rods, the nozzle needs to be

purged in between printing the outside color ratio and printing the inside color ratio. Purging refers

to the extrusion of sacrificial filament when the outputted mixed filament is transitioning between

two different ratios (tissue types).

We have implemented a “caging” method in which a cage is built around the print to purge

the nozzle. The method is an extension of the “brim” artifact commonly used to help prints adhere

to the print bed. Essentially, at every layer, concentric shapes around the model are printed for each

ratio. This allows the nozzle to fully transition to a new mixing ratio prior to continuing the print.

This results in a “cage” of sacrificial filament around the print.
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7.5 Lessons learned for use of PETG in filament mixing

The use of PETG filament, a “caging” purging method, mixed filament ratio-based extru-

sion multipliers, and an experimental FDM 3-D printer has taught us many lessons. To facilitate

future researchers in this space, here is a list of lessons learned and pitfalls to avoid.

• BED MATERIAL: PETG sticks very well to the printing bed. The use of sacrificial generic

blue painter’s tape on the print bed will facilitate removal by removing the print from the bed

by pulling on the tape itself.

• BED LEVELING: Add a decent gap between the nozzle and the bed. Typical 3-D printers

level the bed by using a single sheet of regular printing paper as the unit of measure between

the nozzle and the print bed. To account for the “gooey”-ness of PETG, use 3 sheets of paper.

• BED TEMPERATURE: Start the bed temperature around 80° C. Do not heat above 100° C.

Higher bed temperatures are better for bed adhesion, but PETG already adheres pretty well.

Consider decreasing the space between the nozzle and the bed before increasing the bed

temperature.

• NOZZLE TEMPERATURE: PETG prints between 230 and 250° C. However, PTFE (which

is what the tube that aligns the filaments prior to being mixed in the nozzle is made of) has a

melting point between 250 and 260° C. Start at 230° C and do some test prints. If you hear a

knocking noise during printing, your extruder is skipping, and you should increase the nozzle

temperature by 5° C.

• RETRACTION SPEEDS: Do not retract PETG at high speeds. Set the retraction speed to

around 25 mm/s. The retraction distance should be set to about 3 or 4 millimeters for direct

drive extruders. With PETG, the retraction speed is more important than distance. If you still

have oozing and stringing, try lowering the retraction speed.

• TRAVEL SPEED: One more parameter that will help in reducing oozing is the travel speed.

PETG tends to drip from the tip of the nozzle, especially if the nozzle temperature is high.

To combat this, try increasing the travel speed to reduce the time the printer is not actively

extruding.

• PRINT SPEED: PETG is very sensitive to print speed. Printing too fast results in poor layer

adhesion, extruder skipping, and low print quality. Printing too slow results in deformed parts,
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stringing, and oozing. A good place to start is between 50 and 55 mm/s. We suggest 25 mm/s

for the first layer and the outer wall, while travel moves should be as fast as possible, at least

120 mm/s, to avoid oozing.

• FANS: We recommend printing without fans for the first two layers. All other layers should

have the fan running at 100%.



CHAPTER 8

Conclusions

This dissertation was an attempt to scale the advantages of DOI by addressing certain

architectural limitations of modern imaging systems, namely portability, modularity, and optode

density. We believe that the system features that arise through exploring these architectural attributes

contribute to increasing the number of applications of DOI across populations and settings. By

developing hardware and software frameworks that simplify the design and analysis of complex

imaging systems, we can more easily manage the growing number of components, subsystems, and

computational needs of modern imaging systems, enabling their scalability.

First, we designed, built, and characterized three NIR DOI systems—MOXI, MOBI, and

OMCI. Our exploration of the challenge to improve the portability of traditional oximeters led to

the development of a mobile-phone-based pulse oximeter, MOXI, that leverages optical sensors and

computational resources embedded inside already ubiquitous mobile phones. By using a mobile

application to calculate, display, and store oxygenation readings, we developed a way to easily dis-

tribute our oximetry system to many users while at the same time providing a way to easily share

information with remote stakeholders. Our wearable functional brain imaging system, MOBI, was

not only portable but also wearable. The portability of this neuroimaging system was increased

through its use of lightweight flexible-circuit boards and low-power components that allowed the

system to be battery-powered. MOBI also attempted to facilitate the use of the complex modular

architecture by implementing an automatic connection topology detection method that requires no

user input, freeing a user to focus on the use of a system rather than its setup. The use of the modu-

lar architecture also permitted a higher-density probe through the use of channels with sources and

detectors on neighboring modules. Moreover, we mitigated the expected disadvantage that comes

with the use of high-density probes (longer acquisition times) through the introduction of a spatial
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multiplexing encoding strategy to improve full probe frame rates. Finally, by designing OMCI as a

collection of multiple subsystems, we were able to build a sophisticated, standalone, optical mam-

mography system that can be easily wheeled throughout a clinic. Portability was further augmented

through a design that allowed the SLI subsystem to be removed and re-attached without the need to

re-calibrate, and through the development of an OMCI GUI that allows for the control of all sub-

systems from a single laptop. This assembly method incorporates a modular attribute into complex

DOT systems by allowing the ability to test, upgrade, and swap out individual imaging subsystems,

permitting users the ability to constantly use the latest version of components. Additionally, its mod-

ular design elevates OMCI to a research platform by allowing simple changes of its settings such

as alternate CW illumination patterns or different RF source positions. Lastly, OMCI directly im-

plements high-optode-density imaging through wide-field illumination and camera-based detection,

allowing for the imaging of large volumes without increasing acquisition times.

Although our systems implemented features that addressed portability, modularity, and

optode density, our explorations quickly led to unanticipated challenges that arose when we adopted

these architectural attributes. For example, as we were designing a modular fNIRS system, we were

required to make many design decisions early in the process, such as the module shape, the module

dimensions, the number of sources and detectors within a module, and the layout of those optodes.

We learned that scalability could not be enabled without a systematic method to tackle the complex-

ity of designing in the modular architecture space. MOCA is the answer to this emerging challenge,

providing fNIRS developers with a systematic yet easy-to-use software platform to navigate the

large design space of modular fNIRS probes and provide metrics-based guidance. MOCA simpli-

fies the design problem with module-level parameters such as size, shape, and optode layout as well

as probe-level parameters such as the maximum source-to-detector separation and ROI geometry

to characterize a modular probe. It offers the ability to perform operator-guided sweeping of probe

parameters such as orientation, spacing, and module staggering offset, helping designers explore

alternative designs that potentially improve upon existing probes or outline spectra of trade-offs.

MOCA is quantitative, guided by application-specific fNIRS performance metrics, including chan-

nel distribution, average brain sensitivity, and spatial multiplexing groups, making it possible for

quantitative characterization and comparison between various design decisions. Similarly, we un-

earthed an unanticipated challenge when validating our newly developed systems. Although the

method to validate new instruments is identical, each new system requires system-specific anatomi-

cal phantoms with optical properties tailored toward its application. If we expect scalability of DOI

to occur through the development of new imaging systems, we must also support the field through
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the development of geometrically accurate phantoms that allow researchers to easily validate the

performance of these systems. In Chapter 7, we detailed a method for characterizing new filaments

for use in multi-material fusion-based 3-D printing. We also show a modified brim method for ef-

ficiently purging filament when a print changes between mixing ratios on a single layer. Through

this process, we show how we can design and set up the fabrication of anatomically complex opti-

cal phantoms for validating arbitrary DOI systems, including the three systems developed for this

dissertation.

Due to their potential advantage, the field has trended towards adopting and improving

portability, modularity, and high-optode-density features in diffuse optical systems. The work in

this dissertation is heavily influenced by that trend. However, these three attributes are not the only

attributes that contribute to the scalability of optical systems, and thus, we cannot over-generalize

the benefits we have reported. There are a plethora of attributes such as cost, interoperability, and

ease of manufacture that contribute to the potential of optical imaging to scale, and each likely has

unanticipated challenges that will arise as those architectural attributes are adopted. Therefore, the

field needs to not only expect and address those emerging challenges, but we also need to address the

limitations of the work in this dissertation. For example, MOXI is intended to address a challenge

with neonate mortality rates but has only been tested in adult subjects. It first needs to be validated

on neonates before being deployed for use in a LMIC. Despite demonstrating preliminary in-vivo

results, MOBI still requires work. Not only does it need a complete headgear design to mount all

the modules together, but the robustness of the FPC cables also needs to be tested in high-motion

environments. Additionally, the results shows were acquired on a subject with short hair. In order

to be truly portable, MOBI needs to both improve its SNR as well as find hardware and/or software

methods to deal with the notorious hair artifacts present in all fNIRS measurements. Similarly,

the in-vivo results presented for OMCI were done on a small number of volunteers. Further studies

using a larger sample size need to be conducted to increase our confidence in the performance of this

system. Moreover, our software frameworks also have limitations. MOCA currently implements

default parameters that are biased based on the current literature. To truly provide a comprehensive

design platform, ergonomic, usability, and communication considerations should also be codified

and implemented. Additionally, our 3-D printing method needs a thorough investigation of the

variability and accuracy of the optical properties resulting from the mixed filaments, including the

effect of different slicing properties such as infill patterns and layer heights.

The aim of this dissertation was to contribute to the enablement of scalability of optical

imaging and spectroscopy systems by exploring varied implementations of architectural attributes
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of portability, modularity, and optode density. We first identified three modern application, user,

and setting-specific grand challenges that would demonstrate the potential broad application of NIR

imaging. We then designed, developed, and validated three imaging systems that incorporated im-

plementations of architectural attributes, including a mobile-phone-based pulse oximeter, a modular

neuroimaging instrument, and a standalone DOT system. Additionally, we developed two work-

flows to address two unanticipated challenges that arose when adopting these attributes. Through

demonstrating technical implementations and through developing frameworks and methods that as-

sist researchers in the initial design and the final validation of optical systems, we expect to attract

more research interest in scaling optical imaging methods. We invite researchers to accelerate the

investigation and creation of the next generation of optical systems through the use of our tools and

the incorporation of our lessons to advance the state-of-the-art of NIR DOI systems.
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anaesthesia in Togo, West Africa. Tropical Doctor, 35(4):220–222, oct 2005.

[78] A J Heywood, I H Wilson, and J R Sinclair. Perioperative mortality in Zambia. Annals of the

Royal College of Surgeons of England, 71:354–358, 1989.

[79] Young-Jin Jung, Manuela Roman, Jennifer Carrasquilla, Sarah J Erickson, and Anuradha

Godavarty. Portable Wide-Field Hand-Held NIR Scanner. Proceedings of SPIE, 8572(i):1–

9, 2013.

[80] W Karlen, G Dumont, C Petersen, J Gow, J Lim, J Sleiman, and J M Ansermino. Human-

Centered Phone Oximeter Interface Design For The Operating Room: Pulse Oximeter Inter-

faced to a Mobile Device for Anesthesia Monitoring in the Developing World. In Healthinf

2011: Proceedings of the International Conference on Health Informatics, number July in 1,

pages 433–438, 2011.

[81] J. Hudson, S. M. Nguku, J. Sleiman, W. Karlen, G. A. Dumont, C. L. Petersen, C. B. War-

riner, and J. M. Ansermino. Usability testing of a prototype phone Oximeter with healthcare

providers in high- and low-medical resource environments. Anaesthesia, 67(9):957–967,

2012.

[82] Robert A. Malkin. Barriers for medical devices for the developing world. Expert Review of

Medical Devices, 4(6):759–763, 2007.

[83] Jacob Poushter. Smartphone Ownership and Internet Usage Continues to Climb in Emerging

Economies. Pew Research Center, pages 1–45, 2016.

[84] Joseph Bailey, Michael Fecteau, and Noah L. Pendleton. Wireless Pulse Oximeter. The

Degree of Bachelor of Science, page 80, 2008.



REFERENCES 127

[85] Elmar Laistler, Barbara Dymerska, Jürgen Sieg, Sigrun Goluch, Roberta Frass-Kriegl, Andre

Kuehne, and Ewald Moser. In vivo MRI of the human finger at 7 T. Magnetic resonance in

medicine, 79(1):588–592, jan 2018.

[86] Steven Jacques, Ting Li, and Scott Prahl. MCXYZ.c, 2013.

[87] Sanathana Konugolu Venkata Sekar, Marco Pagliazzi, Eugènia Negredo, Fabrizio Martelli,
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